题目链接:http://poj.org/problem?id=1458
题目大意:给定a,b两个序列,求最长公共子序列
Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x
ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
Input
The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.
Output
For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
Sample Input
abcfbc abfcab programming contest abcd mnp
Sample Output
4 2 0
思路:
根据LCS问题的最优子结构性质,可得状态转移方程:
C[i,j]=⎧⎩⎨0,C[i−1,j−1]+1,MAX(C[i,j−1],C[i−1,j])当i=0或j=0当i,j>0且xi=yj当i,j>0且xi≠yj
代码:
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<cstdlib>
#include<algorithm>
#include<iostream>
#include<queue>
#include<stack>
#include<map>
using namespace std;
#define FOU(i,x,y) for(int i=x;i<=y;i++)
#define FOD(i,x,y) for(int i=x;i>=y;i--)
#define MEM(a,val) memset(a,val,sizeof(a))
#define PI acos(-1.0)
const double EXP = 1e-9;
typedef long long ll;
typedef unsigned long long ull;
const int INF = 0x3f3f3f3f;
const ll MINF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9+7;
const int N = 1e6+5;
int dp[1005][1005];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
std::ios::sync_with_stdio(false);
char a[1005],b[1005];
while(~scanf(" %s %s",a+1,b+1))
{
dp[0][0]=0;
dp[0][1]=0;
dp[1][0]=0;
int len1=strlen(a+1);
int len2=strlen(b+1);
for(int i=1;i<=len1;i++)
{
for(int j=1;j<=len2;j++)
{
if(a[i]==b[j])
dp[i][j]=dp[i-1][j-1]+1;
else
dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
}
}
printf("%d\n",dp[len1][len2]);
}
return 0;
}

本文解析了最长公共子序列(LCS)问题的算法实现,通过动态规划方法找到两个序列的最长公共子序列长度,并提供了完整的C++代码实现。
3203

被折叠的 条评论
为什么被折叠?



