Problem 2107 Hua Rong Dao
Accept: 326 Submit: 717
Time Limit: 1000 mSec Memory Limit : 32768 KB
Problem Description
Cao Cao was hunted down by thousands of enemy soldiers when he escaped from Hua Rong Dao. Assuming Hua Rong Dao is a narrow aisle (one N*4 rectangle), while Cao Cao can be regarded as one 2*2 grid. Cross general can be regarded as one 1*2 grid.Vertical general can be regarded as one 2*1 grid. Soldiers can be regarded as one 1*1 grid. Now Hua Rong Dao is full of people, no grid is empty.
There is only one Cao Cao. The number of Cross general, vertical general, and soldier is not fixed. How many ways can all the people stand?
Input
There is a single integer T (T≤4) in the first line of the test data indicating that there are T test cases.
Then for each case, only one integer N (1≤N≤4) in a single line indicates the length of Hua Rong Dao.
Output
For each test case, print the number of ways all the people can stand in a single line.
Sample Input
2
1
2
Sample Output
0
18
Hint
Here are 2 possible ways for the Hua Rong Dao 2*4.
Source
题目大意:在必须放置曹操的情况下,问没有空白地方的情况下,一共会有多少种放置方式。
思路:dfs
在此以用来纪念写的第一发这么挫的DFS代码、【因为最开始的思路就好挫好挫】
打表代码:
#include<stdio.h>
#include<string.h>
using namespace std;
int n,ans;
int vis[1000000][5][5];
int check(int output[5][5],int x,int y)
{
if(y+1>=0&&y+1<4&&x+1>=0&&x+1<n)
{
if(output[x][y]==0&&output[x][y+1]==0&&output[x][y]==0&&output[x+1][y+1]==0)
return 1;
}
return 0;
}
int check2(int output[5][5],int x,int y)
{
if(x+1>=0&&x+1<n)
{
if(output[x][y]==0&&output[x+1][y]==0)
return 1;
}
return 0;
}
int check3(int output[5][5],int x,int y)
{
if(y+1>=0&&y+1<4)
{
if(output[x][y]==0&&output[x][y+1]==0)
return 1;
}
return 0;
}
void dfs(int output[5][5],int flag)
{
int oj=0;
for(int i=0;i<n;i++)
{
for(int j=0;j<4;j++)
{
if(output[i][j]==0)oj=1;
}
}
if(oj==0)
{
if(ans==0)ans=1;
int biaoji=1;
for(int l=0;l<ans;l++)
{
int cont=0;
for(int i=0;i<n;i++)
{
for(int j=0;j<4;j++)
{
if(vis[l][i][j]==output[i][j])cont++;
}
}
if(cont==n*4)biaoji=0;
if(biaoji==0)break;
}
if(biaoji==1)
{
//printf("---------------\n");
for(int i=0;i<n;i++)
{
for(int j=0;j<4;j++)
{
//printf("%d ",output[i][j]);
vis[ans][i][j]=output[i][j];
}
//printf("\n");
}
ans++;
}
return ;
}
if(flag==0)
{
for(int i=0;i<n;i++)
{
for(int j=0;j<4;j++)
{
if(check(output,i,j))
{
output[i][j]=4;output[i+1][j]=4;output[i][j+1]=4;output[i+1][j+1]=4;
dfs(output,1);
output[i][j]=0;output[i+1][j]=0;output[i][j+1]=0;output[i+1][j+1]=0;
}
}
}
}
else
{
for(int l=0;l<3;l++)
{
if(l==0)
{
for(int i=0;i<n;i++)
{
for(int j=0;j<4;j++)
{
if(check2(output,i,j))
{
output[i][j]=3;output[i+1][j]=3;
dfs(output,1);
output[i][j]=0;output[i+1][j]=0;
}
}
}
}
if(l==1)
{
for(int i=0;i<n;i++)
{
for(int j=0;j<4;j++)
{
if(check3(output,i,j))
{
output[i][j]=2;output[i][j+1]=2;
dfs(output,1);
output[i][j]=0;output[i][j+1]=0;
}
}
}
}
if(l==2)
{
for(int i=0;i<n;i++)
{
for(int j=0;j<4;j++)
{
if(output[i][j]==0)
{
output[i][j]=1;
dfs(output,1);
output[i][j]=0;
}
}
}
}
}
}
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
ans=0;
scanf("%d",&n);
int output[5][5];
memset(output,0,sizeof(output));
memset(vis,0,sizeof(vis));
dfs(output,0);
printf("%d\n",ans-1);
}
}
AC代码:
#include<stdio.h>
#include<string.h>
using namespace std;
int n,ans;
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n;
scanf("%d",&n);
if(n==1)printf("0\n");
if(n==2)printf("18\n");
if(n==3)printf("284\n");
if(n==4)printf("4862\n");
}
}