那你“”"
Train script for FreqFormerV6
usage example:
python train_freqformer_v6.py --data_dir <…> --batch_size 4 --num_epochs 150
“”"
import os, time, argparse
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F
import your V6 model (adjust path if needed)
from freqformer_v6 import FreqFormerV6
-----------------------
Dice loss (multi-class) and helpers
-----------------------
def one_hot(labels, num_classes):
# labels: [N] (int)
y = torch.eye(num_classes, device=labels.device)[labels]
return y # [N, C]
def multiclass_dice_loss(probs, labels, eps=1e-6):
# probs: [BP, C], labels: [BP] (ints)
C = probs.shape[1]
mask = (labels >= 0)
if mask.sum() == 0:
return probs.new_tensor(0.)
probs = probs[mask] # [M, C]
labels = labels[mask]
gt = one_hot(labels, C) # [M, C]
# compute per-class dice
intersection = (probs * gt).sum(dim=0)
cardinality = probs.sum(dim=0) + gt.sum(dim=0)
dice = (2. * intersection + eps) / (cardinality + eps)
loss = 1.0 - dice
return loss.mean()
Focal Loss (解决类别不平衡问题)
-----------------------
class FocalLoss(nn.Module):
def init(self, alpha=None, gamma=2.0, reduction=‘mean’):
super().init()
self.alpha = alpha # 类别权重向量 [num_classes]
self.gamma = gamma
self.reduction = reduction
def forward(self, inputs, targets): ce_loss = F.cross_entropy(inputs, targets, reduction='none', weight=self.alpha) pt = torch.exp(-ce_loss) focal_loss = (1 - pt)**self.gamma * ce_loss if self.reduction == 'mean': return focal_loss.mean() elif self.reduction == 'sum': return focal_loss.sum() return focal_loss
-----------------------
Lovasz (same as your v5 version) - copied minimal
-----------------------
def lovasz_grad(gt_sorted):
gts = gt_sorted.sum()
if gts == 0:
return torch.zeros_like(gt_sorted)
intersection = gts - gt_sorted.cumsum(0)
union = gts + (1 - gt_sorted).cumsum(0)
jaccard = 1. - intersection / union
if gt_sorted.numel() > 1:
jaccard[1:] = jaccard[1:] - jaccard[:-1]
return jaccard
def flatten_probas(probas, labels, ignore_index=-1):
mask = (labels != ignore_index)
if not mask.any():
return probas.new(0), labels.new(0)
probas = probas[mask]
labels = labels[mask]
return probas, labels
def lovasz_softmax(probas, labels, classes=‘present’, ignore_index=-1):
C = probas.size(1)
losses = []
probas, labels = flatten_probas(probas, labels, ignore_index)
if probas.numel() == 0:
return probas.new_tensor(0.)
for c in range(C):
fg = (labels == c).float()
if classes == ‘present’ and fg.sum() == 0:
continue
class_pred = probas[:, c]
errors = (fg - class_pred).abs()
perm = torch.argsort(errors, descending=True)
fg_sorted = fg[perm]
grad = lovasz_grad(fg_sorted)
loss_c = torch.dot(F.relu(errors[perm]), grad)
losses.append(loss_c)
if len(losses) == 0:
return probas.new_tensor(0.)
return sum(losses) / len(losses)
-----------------------
Dataset (S3DIS npy layout assumed)
-----------------------
class S3DISDatasetAug(Dataset):
def init(self, data_dir, split=‘train’, val_area=‘Area_5’, num_points=1024, augment=True):
self.num_points = num_points
self.augment = augment and (split == ‘train’)
self.files = []
for f in sorted(os.listdir(data_dir)):
if not f.endswith(‘.npy’):
continue
if split == ‘train’ and val_area in f:
continue
if split == ‘val’ and val_area not in f:
continue
self.files.append(os.path.join(data_dir, f))
if len(self.files) == 0:
raise RuntimeError(f"No files found in {data_dir} (split={split})")
def __len__(self): return len(self.files) def __getitem__(self, idx): data = np.load(self.files[idx]) coords = data[:, :3].astype(np.float32) extra = data[:, 3:6].astype(np.float32) labels = data[:, 6].astype(np.int64) N = coords.shape[0] if N >= self.num_points: choice = np.random.choice(N, self.num_points, replace=False) else: choice = np.random.choice(N, self.num_points, replace=True) coords = coords[choice] extra = extra[choice] labels = labels[choice] if self.augment: theta = np.random.uniform(0, 2*np.pi) c, s = np.cos(theta), np.sin(theta) R = np.array([[c, -s, 0], [s, c, 0], [0, 0, 1]], dtype=np.float32) coords = coords.dot(R.T) scale = np.random.uniform(0.9, 1.1) coords = coords * scale coords = coords + np.random.normal(0, 0.01, coords.shape).astype(np.float32) local_feat = np.concatenate([coords, extra], axis=1) return { 'local_feat': torch.from_numpy(local_feat).float(), 'coords': torch.from_numpy(coords).float(), 'extra': torch.from_numpy(extra).float(), 'label': torch.from_numpy(labels).long() }
-----------------------
helpers: confusion & iou
-----------------------
def compute_confusion_matrix(preds, gts, num_classes):
mask = (gts >= 0) & (gts < num_classes)
gt = gts[mask].astype(np.int64)
pred = preds[mask].astype(np.int64)
conf = np.bincount(gt * num_classes + pred, minlength=num_classes**2)
return conf.reshape((num_classes, num_classes))
def compute_iou_from_conf(conf):
inter = np.diag(conf)
gt_sum = conf.sum(axis=1)
pred_sum = conf.sum(axis=0)
union = gt_sum + pred_sum - inter
iou = inter / (union + 1e-10)
return iou
-----------------------
compute class weights
-----------------------
def compute_class_weights(file_list, num_classes, method=‘inv_sqrt’):
counts = np.zeros(num_classes, dtype=np.float64)
for p in file_list:
data = np.load(p, mmap_mode=‘r’)
labels = data[:, 6].astype(np.int64)
for c in range(num_classes):
counts[c] += (labels == c).sum()
counts = np.maximum(counts, 1.0)
if method == ‘inv_freq’:
weights = 1.0 / counts
elif method == ‘inv_sqrt’:
weights = 1.0 / np.sqrt(counts)
else:
weights = np.ones_like(counts)
weights = weights / weights.sum() * num_classes
return torch.from_numpy(weights.astype(np.float32))
-----------------------
main
-----------------------
def main():
parser = argparse.ArgumentParser()
parser.add_argument(‘–data_dir’, default=‘/root/autodl-tmp/pointcloud_seg/data/S3DIS_new/processed_npy’)
parser.add_argument(‘–save_dir’, default=‘./checkpoints_v6’)
parser.add_argument(‘–batch_size’, type=int, default=4)
parser.add_argument(‘–num_epochs’, type=int, default=300)
parser.add_argument(‘–num_points’, type=int, default=1024)
parser.add_argument(‘–num_classes’, type=int, default=13)
parser.add_argument(‘–lr’, type=float, default=1e-3)
parser.add_argument(‘–device’, default=‘cuda’ if torch.cuda.is_available() else ‘cpu’)
parser.add_argument(‘–use_class_weights’, action=‘store_true’)
parser.add_argument(‘–use_lovasz’, action=‘store_true’)
parser.add_argument(‘–warmup_epochs’, type=int, default=5)
parser.add_argument(‘–num_workers’, type=int, default=8)
parser.add_argument(‘–grad_clip’, type=float, default=1.0)
parser.add_argument(‘–use_focal’, action=‘store_true’, help=‘Use Focal Loss instead of CrossEntropy’)
parser.add_argument(‘–focal_gamma’, type=float, default=2.0, help=‘Gamma parameter for Focal Loss’)
args = parser.parse_args()
os.makedirs(args.save_dir, exist_ok=True) device = torch.device(args.device) train_ds = S3DISDatasetAug(args.data_dir, split='train', num_points=args.num_points, augment=True) val_ds = S3DISDatasetAug(args.data_dir, split='val', num_points=args.num_points, augment=False) train_loader = DataLoader(train_ds, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, drop_last=True) val_loader = DataLoader(val_ds, batch_size=1, shuffle=False, num_workers=max(1, args.num_workers//2)) class_weights = None if args.use_class_weights: print("Computing class weights...") class_weights = compute_class_weights(train_ds.files, args.num_classes, method='inv_sqrt').to(device) print("class weights:", class_weights.cpu().numpy()) model = FreqFormerV6(num_classes=args.num_classes) if torch.cuda.device_count() > 1 and args.device.startswith('cuda'): print("Using DataParallel on devices:", list(range(torch.cuda.device_count()))) model = torch.nn.DataParallel(model) model = model.to(device) focal_criterion = None # 添加在优化器初始化之前 if args.use_focal: print(f"Using Focal Loss with gamma={args.focal_gamma}") # 设置alpha权重(优先使用计算的类别权重) if class_weights is not None: alpha = class_weights else: alpha = torch.ones(args.num_classes).to(device) # 增强低频类别的权重(根据实际数据集调整) rare_classes = [3, 4, 6, 9, 11] # 示例:S3DIS中的低频类别 for c in rare_classes: if c < len(alpha): alpha[c] *= 3.0 # 低频类别权重增加3倍 focal_criterion = FocalLoss(alpha=alpha, gamma=args.focal_gamma).to(device) optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=1e-4) # Cosine with restarts is optional; using CosineAnnealingLR for smooth decay scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=max(1, args.num_epochs - args.warmup_epochs)) best_miou = 0.0 start_epoch = 0 print("Training config:", vars(args)) print("Model params (M):", sum(p.numel() for p in model.parameters())/1e6) # simple warmup schedule helper def get_lr_factor(epoch): if epoch < args.warmup_epochs: return float(epoch + 1) / max(1.0, args.warmup_epochs) return 1.0 for epoch in range(start_epoch, args.num_epochs): model.train() t0 = time.time() running_loss = 0.0 iters = 0 for batch in train_loader: local_feat = batch['local_feat'].to(device) # [B,N,6] coords = batch['coords'].to(device) # [B,N,3] extra = batch['extra'].to(device) # [B,N,3] labels = batch['label'].to(device) # [B,N] optimizer.zero_grad() # model expects (coords, feats) logits = model(coords, extra) # [B,N,C] B, N, C = logits.shape logits_flat = logits.view(-1, C) labels_flat = labels.view(-1) # === 关键修复点1:添加概率计算 === probs = F.softmax(logits_flat, dim=-1) # 必需用于Dice和Lovasz # === 关键修复点2:添加Dice损失计算 === dice = multiclass_dice_loss(probs, labels_flat) # 必需 if args.use_focal and focal_criterion is not None: ce = focal_criterion(logits_flat, labels_flat) # 使用Focal Loss else: if class_weights is not None: ce = F.cross_entropy(logits_flat, labels_flat, weight=class_weights, ignore_index=-1) else: ce = F.cross_entropy(logits_flat, labels_flat, ignore_index=-1) if args.use_lovasz: lov = lovasz_softmax(probs, labels_flat, ignore_index=-1) else: lov = logits_flat.new_tensor(0.0) # combine: CE + 0.6 * Dice + 0.3 * Lovasz (weights chosen experimentally) loss = ce + 0.6 * dice + 0.3 * lov # warmup LR factor by scaling gradient step (we scale optimizer lr directly) lr_mult = get_lr_factor(epoch) for g in optimizer.param_groups: g['lr'] = args.lr * lr_mult loss.backward() total_norm = 0 for p in model.parameters(): if p.grad is not None: param_norm = p.grad.detach().data.norm(2) total_norm += param_norm.item() ** 2 print(f"Gradient norm: {total_norm ** 0.5:.4f}") # grad clip torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip) optimizer.step() running_loss += loss.item() iters += 1 # scheduler step (after epoch; scheduler uses base lr, we used manual warmup above) try: scheduler.step() except Exception: pass avg_loss = running_loss / max(1, iters) t1 = time.time() print(f"Epoch {epoch+1}/{args.num_epochs} TrainLoss: {avg_loss:.4f} Time: {(t1-t0):.1f}s LR: {optimizer.param_groups[0]['lr']:.6f}") # validation every 5 epochs if (epoch + 1) % 5 == 0 or (epoch + 1) == args.num_epochs: model.eval() conf = np.zeros((args.num_classes, args.num_classes), dtype=np.int64) tot_loss = 0.0 cnt = 0 with torch.no_grad(): for batch in val_loader: local_feat = batch['local_feat'].to(device) coords = batch['coords'].to(device) extra = batch['extra'].to(device) labels = batch['label'].to(device) logits = model(coords, extra) B, N, C = logits.shape logits_flat = logits.view(-1, C) labels_flat = labels.view(-1) if class_weights is not None: loss_ce = F.cross_entropy(logits_flat, labels_flat, weight=class_weights, ignore_index=-1) else: loss_ce = F.cross_entropy(logits_flat, labels_flat, ignore_index=-1) probs = F.softmax(logits_flat, dim=-1) dice = multiclass_dice_loss(probs, labels_flat) if args.use_lovasz: lov = lovasz_softmax(probs, labels_flat, ignore_index=-1) else: lov = logits_flat.new_tensor(0.0) loss = loss_ce + 0.6 * dice + 0.3 * lov tot_loss += loss.item() preds = logits.argmax(dim=-1).cpu().numpy().reshape(-1) gts = labels.cpu().numpy().reshape(-1) conf += compute_confusion_matrix(preds, gts, args.num_classes) cnt += 1 mean_loss = tot_loss / max(1, cnt) iou = compute_iou_from_conf(conf) miou = np.nanmean(iou) oa = np.diag(conf).sum() / (conf.sum() + 1e-12) print(f"-- Validation Loss: {mean_loss:.4f} mIoU: {miou:.4f} OA: {oa:.4f}") print("Per-class IoU:") for cid, v in enumerate(iou): print(f" class {cid:02d}: {v:.4f}") if miou > best_miou: best_miou = miou path = os.path.join(args.save_dir, f'best_epoch_{epoch+1:03d}_miou_{miou:.4f}.pth') state = {'epoch': epoch+1, 'best_miou': best_miou} if isinstance(model, torch.nn.DataParallel): state['model_state_dict'] = model.module.state_dict() else: state['model_state_dict'] = model.state_dict() torch.save(state, path) print("Saved best:", path) final_path = os.path.join(args.save_dir, f'final_epoch_{args.num_epochs:03d}_miou_{best_miou:.4f}.pth') state = {'epoch': args.num_epochs, 'best_miou': best_miou} if isinstance(model, torch.nn.DataParallel): state['model_state_dict'] = model.module.state_dict() else: state['model_state_dict'] = model.state_dict() torch.save(state, final_path) print("Training finished. Final saved to:", final_path)
if name == “main”:
main()把这个给我生成一份完整的代码吧
最新发布