✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码获取及仿真咨询内容私信。
🔥 内容介绍
在电力负荷预测、水质 pH 值监测、交通流量预测等时序回归场景中,数据常呈现 “非线性强、动态性复杂、噪声干扰多” 的特征 —— 例如电力负荷受季节、天气、用户行为等多因素影响,时序曲线存在突变与长期趋势叠加。回声状态网络(ESN)作为递归神经网络(RNN)的改进型,凭借 “稀疏 reservoir 结构” 实现对非线性时序的高效建模,但其回归预测性能受限于两大核心痛点:
- 关键参数依赖经验调试:ESN 的回归精度高度依赖 “reservoir 规模(神经元数量 N)”“谱半径(ρ,控制 reservoir 动态记忆能力)”“输入权重缩放因子(σ,调节输入信号强度)”“泄漏率(α,平衡短期与长期记忆)” 四大参数 ——ρ 过大会导致 reservoir 发散,ρ 过小则记忆能力不足;σ 过大会引发输入信号饱和,σ 过小则有效信息丢失,传统手动调试或网格搜索不仅效率低,还易因参数耦合(如 ρ 与 σ 相互影响)陷入局部最优;
- reservoir 稀疏连接与噪声鲁棒性弱:ESN 的 reservoir 通过随机稀疏连接(连接概率通常 0.1-0.3)构建,虽降低计算复杂度,但随机连接可能导致 “有效记忆路径缺失”,尤其在含强噪声的回归场景(如水质监测中传感器误差),未优化的 ESN 易出现预测值波动剧烈、趋势拟合偏差大的问题,难以满足工程级回归精度需求。
在此背景下,哈里斯鹰算法(HHO)优化 ESN的组合方案应运而生:HHO 模拟哈里斯鹰 “包围 - 突袭 - 追捕” 的捕食行为,具备全局搜索能力强、收敛速度快、参数敏感性低的优势,可自适应优化 ESN 的核心参数;两者协同形成 “参数智能寻优 - 高效时序回归” 的技术闭环,有效解决 ESN 参数调试难题,提升对非线性、含噪声时序数据的回归预测精度,为工程级时序回归任务(如负荷预测、环境监测)提供可靠技术支撑。
⛳️ 运行结果



📣 部分代码
function Positions = initialization(SearchAgents_no, dim, ub, lb)
%% 初始化
%% 待优化参数个数
Boundary_no = size(ub, 2);
%% 若待优化参数个数为1
if Boundary_no == 1
Positions = rand(SearchAgents_no, dim) .* (ub - lb) + lb;
end
%% 如果存在多个输入边界个数
if Boundary_no > 1
for i = 1 : dim
ub_i = ub(i);
lb_i = lb(i);
Positions(:, i) = rand(SearchAgents_no, 1) .* (ub_i - lb_i) + lb_i;
end
end
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇
703

被折叠的 条评论
为什么被折叠?



