【四旋翼】基于RRT实现四旋翼无人机实施安全和最小能量轨迹规划附Matlab代码和报告

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

四旋翼无人机在复杂环境(如城市峡谷、室内仓库)中的自主飞行,需同时满足实时性(快速响应环境变化)、安全性(规避静态与动态障碍)和能效性(最小化能量消耗)三大核心需求。快速探索随机树(RRT)算法因具备在高维空间中高效搜索可行路径的能力,成为轨迹规划的主流方法之一。然而,标准 RRT 存在路径冗余度高、能量优化不足、动态障碍响应滞后等问题。本文将提出基于改进 RRT 的轨迹规划框架,通过引入能量代价模型、安全约束强化与动态重规划机制,实现四旋翼无人机的实时安全飞行与最小能量消耗的协同优化。

⛳️ 运行结果

📣 部分代码

% _current_figORaxes_ (double) an axis or a figure handle or something else

%

% *Outputs:* 

%

% _curr_axis_ (double) an axes handle for plotting

%

% _curr_figure_ (double) the handle for the figure holding this axis

%

function [curr_axis, curr_figure] = get_axis_handle(current_figORaxes)

    if nargin == 0

        uiwait(msgbox('You have not provided a figure so I will create one, this may cause unexpected results'));

        current_figORaxes = gcf;

    end

    % If this fails then it is likely the figure or axes has been closed so open a new one

    try strcmp(get(current_figORaxes,'type'),'axes');   

    catch ME_1

        display(ME_1);

        figure(current_figORaxes);

    end

    curr_axis=0;     %#ok<NASGU>

    if strcmp(get(current_figORaxes,'type'),'axes')

        curr_axis=current_figORaxes;

    elseif strcmp(get(current_figORaxes,'type'),'figure')

        curr_axis=[];

        %get all children from figure

        curr_children=get(current_figORaxes,'Children');       

        %find an axes in the figure

        for curr_child=1:length(curr_children)

            if strcmp(get(curr_children(curr_child),'type'),'axes')

                curr_axis=curr_children(curr_child);

            end

        end

        %if there are none then create one and use the handle to that one

        if isempty(curr_axis)

            curr_axis=gca(current_figORaxes);

        end

    else

        error('You passed an invalid handle which is neither figure nor axes handle');

    end

    if isempty(getappdata(curr_axis,'axis_setup'))

        hold(curr_axis,'on')

        axis(curr_axis,'equal'); 

        view(curr_axis,3);

        set(curr_axis,'DrawMode','fast');

        setappdata(curr_axis,'axis_setup',true)

        try set(get(curr_axis,'Parent'),'Renderer','opengl'); end %#ok<TRYNC>

    end     

    if isempty(getappdata(curr_axis,'camlight_state')) || strcmp(getappdata(curr_axis,'camlight_state'),'off')

        lightPosition = getappdata(curr_axis,'lightPosition');

        if isempty(lightPosition)            

            lightPosition = [1 1 1];            

            setappdata(curr_axis,'lightPosition',lightPosition);

        end

        light('Position',lightPosition,'Style','infinite','Parent',curr_axis);

        setappdata(curr_axis,'camlight_state','on');

    end       

    %set the current axis to the be the current inside the figure which owns it

    set(get(curr_axis,'Parent'),'CurrentAxes',curr_axis);

    drawnow();

    if nargout==2

        curr_figure = get(curr_axis,'Parent');

    end

end

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值