✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
智能优化算法一直是人工智能领域的热门话题之一。随着技术的不断发展,优化算法在各个领域都有着广泛的应用,尤其在攻防优化领域更是备受关注。今天,我们将介绍一种极致攻防优化算法——Tiki Taka Algorithm。
Tiki Taka Algorithm是一种基于智能优化的攻防优化算法,其灵感来源于足球运动中的“西班牙式打法”——Tiki Taka。Tiki Taka在足球比赛中以其快速的短传和灵活的跑动而闻名,是一种高效的进攻方式。Tiki Taka Algorithm正是借鉴了这种高效的进攻方式,将其应用到了攻防优化算法中,以期达到更加高效的优化效果。
Tiki Taka Algorithm的核心思想是通过快速的信息传递和灵活的决策来实现攻防的优化。在攻防优化问题中,信息的传递和决策的灵活性是非常重要的因素。Tiki Taka Algorithm通过对信息传递和决策过程的优化,使得攻防双方能够更加高效地进行博弈,从而达到更好的优化效果。
与传统的优化算法相比,Tiki Taka Algorithm具有以下几个显著的优势:
-
高效性:Tiki Taka Algorithm通过快速的信息传递和灵活的决策,能够在较短的时间内找到较优的解决方案,从而提高了优化的效率。
-
鲁棒性:Tiki Taka Algorithm在面对不同的攻防情况时能够灵活应对,具有较强的鲁棒性,能够适应不同的环境和条件。
-
可扩展性:Tiki Taka Algorithm能够很好地适应不同规模和复杂度的攻防优化问题,具有较强的可扩展性。
总的来说,Tiki Taka Algorithm作为一种极致攻防优化算法,具有较高的实用价值和广阔的应用前景。在未来的人工智能领域,Tiki Taka Algorithm有望成为攻防优化领域的重要技术之一,为各种攻防优化问题的解决提供更加高效和可靠的解决方案。相信随着技术的不断发展,Tiki Taka Algorithm将会在攻防优化领域发挥出越来越重要的作用。
📣 部分代码
function [lowerbound,upperbound,dimension,fitness] = fun_info(F)
switch F
case 'F1'
fitness = @F1;
lowerbound=-100;
upperbound=100;
dimension=30;
case 'F2'
fitness = @F2;
lowerbound=-10;
upperbound=10;
dimension=30;
case 'F3'
fitness = @F3;
lowerbound=-100;
upperbound=100;
dimension=30;
case 'F4'
fitness = @F4;
lowerbound=-100;
upperbound=100;
dimension=30;
case 'F5'
fitness = @F5;
lowerbound=-30;
upperbound=30;
dimension=30;
case 'F6'
fitness = @F6;
lowerbound=-100;
upperbound=100;
dimension=30;
case 'F7'
fitness = @F7;
lowerbound=-1.28;
upperbound=1.28;
dimension=30;
case 'F8'
fitness = @F8;
lowerbound=-500;
upperbound=500;
dimension=30;
case 'F9'
fitness = @F9;
lowerbound=-5.12;
upperbound=5.12;
dimension=30;
case 'F10'
fitness = @F10;
lowerbound=-32;
upperbound=32;
dimension=30;
case 'F11'
fitness = @F11;
lowerbound=-600;
upperbound=600;
dimension=30;
case 'F12'
fitness = @F12;
lowerbound=-50;
upperbound=50;
dimension=30;
case 'F13'
fitness = @F13;
lowerbound=-50;
upperbound=50;
dimension=30;
case 'F14'
fitness = @F14;
lowerbound=-65.536;
upperbound=65.536;
dimension=2;
case 'F15'
fitness = @F15;
lowerbound=-5;
upperbound=5;
dimension=4;
case 'F16'
fitness = @F16;
lowerbound=-5;
upperbound=5;
dimension=2;
case 'F17'
fitness = @F17;
lowerbound=[-5,0];
upperbound=[10,15];
dimension=2;
case 'F18'
fitness = @F18;
lowerbound=-2;
upperbound=2;
dimension=2;
case 'F19'
fitness = @F19;
lowerbound=0;
upperbound=1;
dimension=3;
case 'F20'
fitness = @F20;
lowerbound=0;
upperbound=1;
dimension=6;
case 'F21'
fitness = @F21;
lowerbound=0;
upperbound=10;
dimension=4;
case 'F22'
fitness = @F22;
lowerbound=0;
upperbound=10;
dimension=4;
case 'F23'
fitness = @F23;
lowerbound=0;
upperbound=10;
dimension=4;
end
end
% F1
function R = F1(x)
R=sum(x.^2);
end
% F2
function R = F2(x)
R=sum(abs(x))+prod(abs(x));
end
% F3
function R = F3(x)
dimension=size(x,2);
R=0;
for i=1:dimension
R=R+sum(x(1:i))^2;
end
end
% F4
function R = F4(x)
R=max(abs(x));
end
% F5
function R = F5(x)
dimension=size(x,2);
R=sum(100*(x(2:dimension)-(x(1:dimension-1).^2)).^2+(x(1:dimension-1)-1).^2);
end
% F6
function R = F6(x)
R=sum(abs((x+.5)).^2);
end
% F7
function R = F7(x)
dimension=size(x,2);
R=sum([1:dimension].*(x.^4))+rand;
end
% F8
function R = F8(x)
R=sum(-x.*sin(sqrt(abs(x))));
end
% F9
function R = F9(x)
dimension=size(x,2);
R=sum(x.^2-10*cos(2*pi.*x))+10*dimension;
end
% F10
function R = F10(x)
dimension=size(x,2);
R=-20*exp(-.2*sqrt(sum(x.^2)/dimension))-exp(sum(cos(2*pi.*x))/dimension)+20+exp(1);
end
% F11
function R = F11(x)
dimension=size(x,2);
R=sum(x.^2)/4000-prod(cos(x./sqrt([1:dimension])))+1;
end
% F12
function R = F12(x)
dimension=size(x,2);
R=(pi/dimension)*(10*((sin(pi*(1+(x(1)+1)/4)))^2)+sum((((x(1:dimension-1)+1)./4).^2).*...
(1+10.*((sin(pi.*(1+(x(2:dimension)+1)./4)))).^2))+((x(dimension)+1)/4)^2)+sum(Ufun(x,10,100,4));
end
% F13
function R = F13(x)
dimension=size(x,2);
R=.1*((sin(3*pi*x(1)))^2+sum((x(1:dimension-1)-1).^2.*(1+(sin(3.*pi.*x(2:dimension))).^2))+...
((x(dimension)-1)^2)*(1+(sin(2*pi*x(dimension)))^2))+sum(Ufun(x,5,100,4));
end
% F14
function R = F14(x)
aS=[-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32;,...
-32 -32 -32 -32 -32 -16 -16 -16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32];
for j=1:25
bS(j)=sum((x'-aS(:,j)).^6);
end
R=(1/500+sum(1./([1:25]+bS))).^(-1);
end
% F15
function R = F15(x)
aK=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246];
bK=[.25 .5 1 2 4 6 8 10 12 14 16];bK=1./bK;
R=sum((aK-((x(1).*(bK.^2+x(2).*bK))./(bK.^2+x(3).*bK+x(4)))).^2);
end
% F16
function R = F16(x)
R=4*(x(1)^2)-2.1*(x(1)^4)+(x(1)^6)/3+x(1)*x(2)-4*(x(2)^2)+4*(x(2)^4);
end
% F17
function R = F17(x)
R=(x(2)-(x(1)^2)*5.1/(4*(pi^2))+5/pi*x(1)-6)^2+10*(1-1/(8*pi))*cos(x(1))+10;
end
% F18
function R = F18(x)
R=(1+(x(1)+x(2)+1)^2*(19-14*x(1)+3*(x(1)^2)-14*x(2)+6*x(1)*x(2)+3*x(2)^2))*...
(30+(2*x(1)-3*x(2))^2*(18-32*x(1)+12*(x(1)^2)+48*x(2)-36*x(1)*x(2)+27*(x(2)^2)));
end
% F19
function R = F19(x)
aH=[3 10 30;.1 10 35;3 10 30;.1 10 35];cH=[1 1.2 3 3.2];
pH=[.3689 .117 .2673;.4699 .4387 .747;.1091 .8732 .5547;.03815 .5743 .8828];
R=0;
for i=1:4
R=R-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));
end
end
% F20
function R = F20(x)
aH=[10 3 17 3.5 1.7 8;.05 10 17 .1 8 14;3 3.5 1.7 10 17 8;17 8 .05 10 .1 14];
cH=[1 1.2 3 3.2];
pH=[.1312 .1696 .5569 .0124 .8283 .5886;.2329 .4135 .8307 .3736 .1004 .9991;...
.2348 .1415 .3522 .2883 .3047 .6650;.4047 .8828 .8732 .5743 .1091 .0381];
R=0;
for i=1:4
R=R-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));
end
end
% F21
function R = F21(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];
R=0;
for i=1:5
R=R-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end
% F22
function R = F22(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];
R=0;
for i=1:7
R=R-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end
% F23
function R = F23(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];
R=0;
for i=1:10
R=R-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end
function R=Ufun(x,a,k,m)
R=k.*((x-a).^m).*(x>a)+k.*((-x-a).^m).*(x<(-a));
end
⛳️ 运行结果
🔗 参考文献
Rashid, Mohd Fadzil Faisae Ab. “Tiki-Taka Algorithm: a Novel Metaheuristic Inspired by Football Playing Style.” Engineering Computations, vol. 38, no. 1, Emerald, June 2020, pp. 313–43, doi:10.1108/ec-03-2020-0137.