✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
在机器学习领域,数据回归预测是一个重要的任务,它可以帮助我们从已知数据中推断出未知数据的值。最小二乘支持向量机(Least Squares Support Vector Machine,简称LSSVM)是一种常用的回归预测模型,它通过最小化误差平方和来拟合数据。
然而,LSSVM模型在处理大规模数据集时可能会面临一些挑战。为了解决这个问题,我们可以引入黏菌算法(Slime Mould Algorithm,简称SMA)来优化LSSVM模型,以提高其性能和准确性。
黏菌算法是一种基于自然界中黏菌的行为机制而设计的优化算法。黏菌是一种单细胞生物,它具有自主移动和感知环境的能力。黏菌通过释放化学物质来吸引或排斥其他黏菌,并通过这种相互作用来寻找最佳路径或解决问题。
在基于黏菌算法优化的SMA-LSSVM中,我们首先使用LSSVM模型来拟合数据。然后,我们将黏菌算法引入到模型中,以优化模型参数。黏菌算法通过模拟黏菌的行为,通过释放化学物质来吸引或排斥其他模型参数,以寻找最佳的参数组合。
SMA-LSSVM模型的优化过程可以分为以下几个步骤:
-
初始化黏菌群体:根据LSSVM模型的参数空间,初始化一群黏菌。每个黏菌代表一个参数组合。
-
计算适应度函数:根据LSSVM模型的性能指标(如均方误差或决定系数),计算每个黏菌的适应度值。适应度值越高,表示该参数组合越优秀。
-
释放化学物质:根据适应度值,每个黏菌释放化学物质来吸引或排斥其他黏菌。适应度值高的黏菌释放的化学物质浓度较高,吸引其他黏菌靠近;适应度值低的黏菌释放的化学物质浓度较低,排斥其他黏菌。
-
移动和更新参数:黏菌根据化学物质的浓度移
📣 部分代码
function [model,Yt] = prelssvm(model,Xt,Yt)% Preprocessing of the LS-SVM%% These functions should only be called by trainlssvm or by% simlssvm. At first the preprocessing assigns a label to each in-% and output component (c for continuous, a for categorical or b% for binary variables). According to this label each dimension is rescaled:%% * continuous: zero mean and unit variance% * categorical: no preprocessing% * binary: labels -1 and +1%% Full syntax (only using the object oriented interface):%% >> model = prelssvm(model)% >> Xp = prelssvm(model, Xt)% >> [empty, Yp] = prelssvm(model, [], Yt)% >> [Xp, Yp] = prelssvm(model, Xt, Yt)%% Outputs% model : Preprocessed object oriented representation of the LS-SVM model% Xp : Nt x d matrix with the preprocessed inputs of the test data% Yp : Nt x d matrix with the preprocessed outputs of the test data% Inputs% model : Object oriented representation of the LS-SVM model% Xt : Nt x d matrix with the inputs of the test data to preprocess% Yt : Nt x d matrix with the outputs of the test data to preprocess%%% See also:% postlssvm, trainlssvm% Copyright (c) 2011, KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.be/sista/lssvmlabif model.preprocess(1)~='p', % no 'preprocessingif nargin>=2, model = Xt; endreturnend%% what to do%if model.preprocess(1)=='p',eval('if model.prestatus(1)==''c'',model.prestatus=''unschemed'';end','model.prestatus=''unschemed'';');endif nargin==1, % only model rescaling%% if UNSCHEMED, redefine a rescaling%if model.prestatus(1)=='u',% 'unschemed'ffx =[];for i=1:model.x_dim,eval('ffx = [ffx model.pre_xscheme(i)];',...'ffx = [ffx signal_type(model.xtrain(:,i),inf)];');endmodel.pre_xscheme = ffx;ff = [];for i=1:model.y_dim,eval('ff = [ff model.pre_yscheme(i)];',...'ff = [ff signal_type(model.ytrain(:,i),model.type)];');endmodel.pre_yscheme = ff;model.prestatus='schemed';end%% execute rescaling as defined if not yet CODED%if model.prestatus(1)=='s',% 'schemed'model=premodel(model);model.prestatus = 'ok';end%% rescaling of the to simulate inputs%elseif model.preprocess(1)=='p'if model.prestatus(1)=='o',%'ok'eval('Yt;','Yt=[];');[model,Yt] = premodel(model,Xt,Yt);elsewarning('model rescaling inconsistent..redo ''model=prelssvm(model);''..');endendfunction [type,ss] = signal_type(signal,type)%% determine the type of the signal,% binary classifier ('b'), categorical classifier ('a'), or continuous% signal ('c')%%ss = sort(signal);dif = sum(ss(2:end)~=ss(1:end-1))+1;% binaryif dif==2,type = 'b';% categoricalelseif dif<sqrt(length(signal)) || type(1)== 'c',type='a';% continuelsetype ='c';end%% effective rescaling%function [model,Yt] = premodel(model,Xt,Yt)%%%if nargin==1,for i=1:model.x_dim,% CONTINUOUS VARIABLE:if model.pre_xscheme(i)=='c',model.pre_xmean(i)=mean(model.xtrain(:,i));model.pre_xstd(i) = std(model.xtrain(:,i));model.xtrain(:,i) = pre_zmuv(model.xtrain(:,i),model.pre_xmean(i),model.pre_xstd(i));% CATEGORICAL VARIBALE:elseif model.pre_xscheme(i)=='a',model.pre_xmean(i)= 0;model.pre_xstd(i) = 0;model.xtrain(:,i) = pre_cat(model.xtrain(:,i),model.pre_xmean(i),model.pre_xstd(i));% BINARY VARIBALE:elseif model.pre_xscheme(i)=='b',model.pre_xmean(i) = min(model.xtrain(:,i));model.pre_xstd(i) = max(model.xtrain(:,i));model.xtrain(:,i) = pre_bin(model.xtrain(:,i),model.pre_xmean(i),model.pre_xstd(i));endendfor i=1:model.y_dim,% CONTINUOUS VARIABLE:if model.pre_yscheme(i)=='c',model.pre_ymean(i)=mean(model.ytrain(:,i),1);model.pre_ystd(i) = std(model.ytrain(:,i),1);model.ytrain(:,i) = pre_zmuv(model.ytrain(:,i),model.pre_ymean(i),model.pre_ystd(i));% CATEGORICAL VARIBALE:elseif model.pre_yscheme(i)=='a',model.pre_ymean(i)=0;model.pre_ystd(i) =0;model.ytrain(:,i) = pre_cat(model.ytrain(:,i),model.pre_ymean(i),model.pre_ystd(i));% BINARY VARIBALE:elseif model.pre_yscheme(i)=='b',model.pre_ymean(i) = min(model.ytrain(:,i));model.pre_ystd(i) = max(model.ytrain(:,i));model.ytrain(:,i) = pre_bin(model.ytrain(:,i),model.pre_ymean(i),model.pre_ystd(i));endendelse %if nargin>1, % testdata Xt,if ~isempty(Xt),if size(Xt,2)~=model.x_dim, warning('dimensions of Xt not compatible with dimensions of support vectors...');endfor i=1:model.x_dim,% CONTINUOUS VARIABLE:if model.pre_xscheme(i)=='c',Xt(:,i) = pre_zmuv(Xt(:,i),model.pre_xmean(i),model.pre_xstd(i));% CATEGORICAL VARIBALE:elseif model.pre_xscheme(i)=='a',Xt(:,i) = pre_cat(Xt(:,i),model.pre_xmean(i),model.pre_xstd(i));% BINARY VARIBALE:elseif model.pre_xscheme(i)=='b',Xt(:,i) = pre_bin(Xt(:,i),model.pre_xmean(i),model.pre_xstd(i));endendendif nargin>2 & ~isempty(Yt),if size(Yt,2)~=model.y_dim, warning('dimensions of Yt not compatible with dimensions of training output...');endfor i=1:model.y_dim,% CONTINUOUS VARIABLE:if model.pre_yscheme(i)=='c',Yt(:,i) = pre_zmuv(Yt(:,i),model.pre_ymean(i), model.pre_ystd(i));% CATEGORICAL VARIBALE:elseif model.pre_yscheme(i)=='a',Yt(:,i) = pre_cat(Yt(:,i),model.pre_ymean(i),model.pre_ystd(i));% BINARY VARIBALE:elseif model.pre_yscheme(i)=='b',Yt(:,i) = pre_bin(Yt(:,i),model.pre_ymean(i),model.pre_ystd(i));endendend% assign outputmodel=Xt;endfunction X = pre_zmuv(X,mean,var)%% preprocessing a continuous signal; rescaling to zero mean and unit% variance% 'c'%X = (X-mean)./var;function X = pre_cat(X,mean,range)%% preprocessing a categorical signal;% 'a'%X=X;function X = pre_bin(X,min,max)%% preprocessing a binary signal;% 'b'%if ~sum(isnan(X)) >= 1 %--> OneVsOne encodingn = (X==min);p = not(n);X=-1.*(n)+p;end
⛳️ 运行结果


🔗 参考文献
[1] 孙峰超.基于最小二乘支持向量机的非线性预测控制[D].中国石油大学[2023-09-28].DOI:10.7666/d.y1709445.
[2] 杨钊,路超凡,刘安黎.基于PSO-LSSVM算法的表面粗糙度预测模型与应用[J].机床与液压, 2021, 49(6):5.
[3] 刘云,易松.基于双参数最小二乘支持向量机(TPA-LSSVM)的风电时间序列预测模型的优化研究[J].北京化工大学学报:自然科学版, 2019, 46(2):6.DOI:CNKI:SUN:BJHY.0.2019-02-015.
[4] 殷樾.基于粒子群算法最小二乘支持向量机的日前光伏功率预测[J].分布式能源, 2021, 6(2):7.DOI:10.16513/j.2096-2185.DE.2106019.
文章探讨了如何利用黏菌算法(SMA)优化最小二乘支持向量机(LSSVM),以提高数据回归预测的性能和准确性,特别针对大规模数据集中的挑战。通过模拟黏菌行为调整模型参数,实现更高效的参数组合搜索。
204

被折叠的 条评论
为什么被折叠?



