【路径规划】基于未来搜索优化算法实现栅格地图机器人路径规划附matlab代码

本文探讨了在工业4.0背景下移动机器人路径规划的重要性,介绍了包括A*算法、遗传算法在内的多种经典路径规划方法,并详细阐述了栅格法在室内环境建模中的步骤。同时,提到了基于未来搜索优化的路径规划算法,强调了考虑未来情况对提高效率和安全性的影响。此外,文章还涉及了与路径规划相关的代码示例和相关领域的技术应用。

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

近年来,随着工业4.0的兴起,国内外制造业都在积极进行智能化的转型升级。 作为生产制造环节的搬运工———移动机器人,其在制造业中的重要程度与日俱增。 作为移动机器人关键技术之一的路径规划技术,其在很大程度上决定了机器人本身乃至整条生产线智能化的水平,引发了国内外专家的研究热潮。 机器人的路径规划是指在满足机器人工作条件的基础上,尽可能地找到一条从初始点到目标点的最短且能避开障碍、保证自身安全的路径。为此,针对路径规划问题,国内外专家及学者们提出了许多经典的算法,诸如A*算法、遗传算法、模拟退化算法、启发式搜索法、粒子群算法及蚁群算法等,它们都已应用于机器人的路径规划研究中,并取得了较好的成果。

室内环境栅格法建模步骤

1.栅格粒大小的选取

栅格的大小是个关键因素,栅格选的小,环境分辨率较大,环境信息存储量大,决策速度慢。

栅格选的大,环境分辨率较小,环境信息存储量小,决策速度快,但在密集障碍物环境中发现路径的能力较弱。

2.障碍物栅格确定

当机器人新进入一个环境时,它是不知道室内障碍物信息的,这就需要机器人能够遍历整个环境,检测障碍物的位置,并根据障碍物位置找到对应栅格地图中的序号值,并对相应的栅格值进行修改。自由栅格为不包含障碍物的栅格赋值为0,障碍物栅格为包含障碍物的栅格赋值为1.

3.未知环境的栅格地图的建立

通常把终点设置为一个不能到达的点,比如(-1,-1),同时机器人在寻路过程中遵循“下右上左”的原则,即机器人先向下行走,当机器人前方遇到障碍物时,机器人转向右走,遵循这样的规则,机器人最终可以搜索出所有的可行路径,并且机器人最终将返回起始点。

备注:在栅格地图上,有这么一条原则,障碍物的大小永远等于n个栅格的大小,不会出现半个栅格这样的情况。

目标函数设定

原理

基于未来搜索优化的机器人路径规划算法是一种常用的方法,它能够在考虑未来情况的基础上,进行路径规划以达到更高效和安全的目标。

下面是基于未来搜索优化的机器人路径规划算法的一般步骤:

定义问题:明确机器人路径规划问题的目标和约束条件。例如,最短路径、最小时间、最小能耗等。

建立环境模型:根据实际情况,建立机器人所处环境的模型,包括地图、障碍物、起点和终点等元素。可以使用栅格地图或者图形表示。

考虑未来情况:在传统的路径规划算法中,通常只考虑当前状态下的局部最优解。而基于未来搜索优化的算法会考虑未来一定时间内的变化情况,如障碍物的移动等。这可以通过预测未来状态、使用预测模型或者使用实时传感器数据进行预测。

设计搜索策略:根据问题的特点和实际需求,设计合适的搜索策略。常见的搜索策略包括A算法、D算法等。在这里,可以引入启发式函数来评估路径的优劣,并根据未来情况进行修正。

优化路径:在搜索过程中,根据优化目标对路径进行评估和调整,以得到更优的路径解。可以使用代价函数、约束条件等来进行路径优化。

输出结果:根据搜索算法得到的最优路径,机器人可以按照规划的路径进行移动。同时,还可以根据需要,实时更新路径规划,以适应环境的变化。

需要注意的是,基于未来搜索优化的机器人路径规划算法需要对未来情况进行预测,并在搜索过程中进行实时调整。这要求算法具备较高的计算能力和实时性。同时,在实际应用中,还需要考虑机器人的动力学、传感器信息等因素,并进行合理的约束和规划。

⛄ 部分代码

function drawPath(path,G,flag)%%%%xGrid=size(G,2);drawShanGe(G,flag)hold onset(gca,'XtickLabel','')set(gca,'YtickLabel','')L=size(path,1);Sx=path(1,1)-0.5;Sy=path(1,2)-0.5;plot(Sx,Sy,'ro','MarkerSize',5,'LineWidth',5);   % 起点for i=1:L-1    plot([path(i,2) path(i+1,2)]-0.5,[path(i,1) path(i+1,1)]-0.5,'k-','LineWidth',1.5,'markersize',10)    hold onendEx=path(end,1)-0.5;Ey=path(end,2)-0.5;plot(Ex,Ey,'gs','MarkerSize',5,'LineWidth',5);   % 终点

⛄ 运行结果

⛄ 参考文献

[1] 张毅,刘杰.一种基于优化混合蚁群算法的机器人路径规划算法:CN201711121774.X[P].CN107917711A[2023-07-10].

[2] 吴宪祥,郭宝龙,王娟.基于粒子群三次样条优化的移动机器人路径规划算法[J].机器人, 2009, 31(6):5.DOI:10.3321/j.issn:1002-0446.2009.06.013.

[3] 崔鼎,郝南海,郭阳宽.基于RRT*改进的路径规划算法[J].机床与液压, 2020(9).

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长

### 基于混沌博弈优化算法实现机器人栅格地图路径规划MATLAB代码 #### 1. 初始化参数设置 首先定义一些必要的初始化参数,包括环境尺寸、障碍物位置以及起始点和目标点的位置。 ```matlab % 定义栅格地图大小 mapSize = [50, 50]; % 障碍物位置 (随机生成若干个障碍物) obstacles = randi([1 mapSize], [2, 20]); % 设置起点和终点坐标 startPoint = [5; 5]; goalPoint = [45; 45]; ``` #### 2. 构建栅格地图并可视化 创建一个二值化的栅格图表示法,并绘制出来以便观察。 ```matlab function gridMap = createGridMap(mapSize, obstacles) % 创建空白的地图矩阵 gridMap = zeros(mapSize(1), mapSize(2)); % 将障碍物标记为1 for i = 1:size(obstacles, 2) rowIdx = obstacles(1,i); colIdx = obstacles(2,i); gridMap(rowIdx,colIdx) = 1; end figure(); imagesc(gridMap); axis image; colorbar; end gridMap = createGridMap(mapSize, obstacles); hold on; plot(startPoint(2), startPoint(1), 'go', 'MarkerFaceColor','g'); % 绘制起点 plot(goalPoint(2), goalPoint(1), 'ro', 'MarkerFaceColor','r'); % 绘制终点 title('Robot Path Planning with CGO Algorithm'); xlabel('X-axis'), ylabel('Y-axis'); ``` #### 3. 混沌映射函数设计 采用Logistic Map作为混沌序列发生器的一部分,用于产生具有良好遍历性的初始种群个体。 ```matlab function chaoticSequence = logisticMap(x0, mu, iterNum) x = x0; chaoticSequence = zeros(iterNum, 1); for t=1:iterNum x = mu * x * (1-x); chaoticSequence(t) = round((x*max(mapSize)))+1; end end ``` #### 4. 博弈过程模拟 根据当前候选解集计算适应度值,并通过某种形式的选择压力促使较优方案胜出成为下一代成员之一。 ```matlab function newPopulation = gameTheorySelection(population, fitnessValues, selectionPressure) [~, sortedIndices] = sort(fitnessValues,'descend'); eliteCount = floor(selectionPressure * length(sortedIndices)); elites = population(:,sortedIndices(1:eliteCount)); % 获取精英个体 nonElites = population(:,setdiff(1:length(sortedIndices), sortedIndices(1:eliteCount))); offspring = crossoverAndMutation(elites, nonElites); % 对非精英部分做交叉变异操作 newPopulation = horzcat(offspring, elites); % 合并新旧两代形成新的群体 end ``` #### 5. 主循环逻辑控制 反复迭代执行上述各阶段直到满足终止条件为止,在此期间持续记录最佳路径及其对应的成本开销情况。 ```matlab populationSize = 50; iterationLimit = 100; initialPositions = arrayfun(@(n)logisticMap(rand(), 3.9, 2)', ... ones(1,populationSize),... 'UniformOutput', false); initialPaths = cell2mat(initialPositions); bestPathCosts = Inf; for gen=1:iterationLimit pathFitnesses = evaluatePathQuality(initialPaths, gridMap, startPoint, goalPoint)[^3]; selectedPopulations = gameTheorySelection(initialPaths, pathFitnesses, 0.2); if min(pathFitnesses)< bestPathCosts [~, idxBest]=min(pathFitnesses); optimalRoute = initialPaths(:,idxBest); bestPathCosts = pathFitnesses(idxBest); disp(['Generation ', num2str(gen), ': Best Cost=',num2str(bestPathCosts)]); end initialPaths = selectedPopulations; end ``` #### 6. 结果展示 最后一步是将找到的最佳路线显示在之前建立好的环境中供直观查看效果如何。 ```matlab if ~isempty(optimalRoute) plot(optimalRoute(2,:), optimalRoute(1,:), '-b*', 'LineWidth', 2); else warning('No feasible solution found!'); end legend({'Start Point', 'Goal Point', 'Optimized Route'},'Location','NorthEastOutside') ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值