【图像处理】基于形状提取和模式匹配组合的面部特征点提取方法附Matlab代码

本文提出了一种快速组合可分离性滤波器,用于选择性地检测人脸图像中的圆形特征,如瞳孔和鼻孔。该滤波器通过多个矩形可分离滤波器的组合实现高速处理和高定位精度。实验表明,与传统圆形可分离滤波器相比,该方法速度快70倍。

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测 雷达通信  无线传感器

信号处理 图像处理 路径规划 元胞自动机 无人机  电力系统

⛄ 内容介绍

In this paper, we propose a fast combined separabil-ity filter, which can selectively detect circular features such as pupils and nostrils in an image of the human face. The proposed filter is designed as a combination of multiple rectangle separability filters so that it can achieve high-speed processing and high positioning ac-curacy at the same time. The evaluation experiments using synthetic images and real face images show that the proposed filter is 70 times faster than the conven-tional circular separability filter.

⛄ 部分代码

function MAP = cvtCombSimpRectFilter45(I,P,sh)

% Function to generate separability map for diagonal filters (diagonal left and right)

% Input: I: 45 degrees integral image, obtained by using cvtIntegralImage45(X);

%        P: 45 degrees integral image of the square pixel values, obtained by using cvtIntegralImage45(X.^2);

%        sh: size of the filter

% Output: MAP: two separability maps (diagonal left and diagonal right), with size: [Height, Width, 2].

%

% If you use this code, we would appreciate if you cite the following paper(s):

% [1] Y. Ohkawa, C. H. Suryanto, K. Fukui, 

% "Fast Combined Separability Filter for Detecting Circular Objects", 

% The twelfth IAPR conference on Machine Vision Applications (MVA) pp.99-103, 2011.

%

% [2] K. Fukui, O. Yamaguchi, 

% "Facial feature point extraction method based on combination of shape extraction 

%  and pattern matching", Systems and Computers in Japan 29 (6), pp.49-58, 1998.

%

% This code is written by Yasuhiro Ohkawa and distributed under BSD License.

% Computer Vision Laboratory (CVLAB)

% Graduate school of Systems and Information Engineering

% University of Tsukuba

% 2016

%

% Email: tsukuba.cvlab@gmail.com

% HP: http://www.cvlab.cs.tsukuba.ac.jp/

%

r = round(sh/sqrt(2));

w = ceil(sh/3/sqrt(2));

br = 2*r;

MAP(:,:,1) = tmpFnc(I,P,r,br,w,w);

MAP(:,:,2) = tmpFnc(I,P,w,w,r,br);

end

%%

function MAP = tmpFnc(I,P,r,br,w,bw)

MAP = zeros(size(I)-1);

[H, W] = size(MAP);

h = bw+br+2;

N =(2*bw+1)*(2*(1+2*br));

N1=(2*w+1)*(2*(1+2*r));

N2=N-N1;

HH = bw + br +1+1:H-(bw + br +2);

WW = bw + br +3:W-(bw + br+1);

P1 = I(HH - bw - br -1      ,WW + bw - br - 1);

P2 = I(HH + bw - br -1+1    ,WW - bw - br - 1-1  );

P3 = I(HH + bw + br +1      ,WW - bw + br - 1);

P4 = I(HH - bw + br         ,WW + bw + br    );

S = (P4+P2-P3-P1);

P1 = P(HH - bw - br -1      ,WW + bw - br - 1);

P2 = P(HH + bw - br -1+1    ,WW - bw - br - 1-1  );

P3 = P(HH + bw + br +1      ,WW - bw + br - 1);

P4 = P(HH - bw + br         ,WW + bw + br    );

T= (P4+P2-P3-P1);

M = S./N;

Y = T./N;

St = Y - M.^2;

P1 = I(HH - w - r -1      ,WW + w - r - 1);

P2 = I(HH + w - r -1+1    ,WW - w - r - 1-1  );

P3 = I(HH + w + r +1      ,WW - w + r - 1);

P4 = I(HH - w + r         ,WW + w + r    );

S1= (P4+P2-P3-P1);

S2=S-S1;

M1=S1/N1;

M2=S2/N2;

Sb = ((N1*((M1-M).^2)) + (N2*((M2-M).^2)))/N;

MAP(h:end-h,h:end-h)=(Sb./St).*sign(M2-M1);

MAP(isnan(MAP))=0;

MAP(isinf(MAP))=0;

end

⛄ 运行结果

⛄ 参考文献

[1]谢琛. 基于主动形状模型的人脸特征提取技术研究与应用[D]. 国防科学技术大学, 2009.

[2] Y. Ohkawa, C. H. Suryanto, K. Fukui, "Fast Combined Separability Filter for Detecting Circular Objects", The twelfth IAPR conference on Machine Vision Applications (MVA) pp.99-103, 2011.​

[3] K. Fukui, O. Yamaguchi, "Facial feature point extraction method based on combination of shape extraction and pattern matching", Systems and Computers in Japan 29 (6), pp.49-58, 1998.

❤️ 关注我领取海量matlab电子书和数学建模资料

❤️部分理论引用网络文献,若有侵权联系博主删除

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值