【图像融合】基于交叉双边滤波器的图像融合算法研究附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测 雷达通信  无线传感器

信号处理 图像处理 路径规划 元胞自动机 无人机

⛄ 内容介绍

In this paper the Cross Bilateral Filter is used to fuse source images with the help of Mahalanobis distance measure. The proposed image fusion algorithm directly fuses two source images of a same scene using weighted average. The proposed method differs from other weighted average methods in terms of weight computation and the domain of weighted average. Here, the weights are computed by measuring the strength of details in a detail image obtained by subtracting CBF output from original image. The weights thus computed are multiplied directly with the original source images followed by weight normalization. This paper compares the few similar image fusion algorithms by considering the performance evaluation metrics like Entropy, Standard Deviation, and PSNR.Keywords: Cross Bilateral Filter, Mahalanobis distance, Entropy, Standard Deviation, PSNR.

⛄ 部分代码

function xcovar=covarf(x,cov_wsize)

%%% covarf: computes covariance of a signal.

%%% covarf(X), if X is a vector, returns the variance.

%%% For matrices, where each row is an observation, and each column a variable,

%%% covarf(X) is the covariance matrix.

%%% diag(covarf(X)) is a vector of variances for each column.

%%% sqrt(diag(covarf(X))) is a vector of standard deviations.

%%% wsize should be odd.

%%% Author : B. K. SHREYAMSHA KUMAR 

%%% Created on 15-02-2012.

%%% Updated on 15-02-2012.

tr=x-repmat(mean(x),cov_wsize,1);

xcovar=tr'*tr/(cov_wsize-1);

⛄ 运行结果

⛄ 参考文献

[1] Kishore K ,  Nagaraju N ,  Kumar A . An Adaptive Multi-Focus Medical Image Fusion using Cross Bilateral Filter Based on Mahalanobis Distance Measure. 

❤️ 关注我领取海量matlab电子书和数学建模资料

❤️部分理论引用网络文献,若有侵权联系博主删除

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值