基于蚁群结合遗传算法的路径规划问题附Matlab代码

本文介绍了一种结合蚁群和遗传算法的路径搜索方法,用于在栅格地图中指导机器人避开障碍,实现从初始位置到目标的无碰撞路径优化。通过信息素调整策略,防止陷入局部最优,最终获取全局最优路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测 雷达通信  无线传感器

信号处理 图像处理 路径规划 元胞自动机 无人机

⛄ 内容介绍

通过栅格法建立栅格地图作为机器人路径规划的工作环境,采用蚁群算法结合遗传算法作为机器人路径搜索的规则.将所有机器人放置于初始位置,经过NC次无碰撞迭代运动找到最优路径,到达目标位置.为防止机器人在路径搜索过程中没有达到最大迭代次时路径大小已不发生变化而陷入局部最优,则通过对各路径上的信息素进行增减来使机器人路径搜索跳出当前值,继续搜索,直到迭代完毕,获得最优路径.

⛄ 部分代码

function new_population_1=GenerateSmoothPath(path,G)  

  loong=size(path,2);

  for i=1:loong

      path1=path{i};

      long=size(path1,2);

      j=1;

      while j~=long-2

          [a1,b1]=position2rc(path1(j));

          [a3,b3]=position2rc(path1(j+2));

          if a1<a3

              if all(G(a1:a3,b1:b3)==0)% && all(G(a1:a3,b3)==0) && all(G(a1:a3,ceil((b1+b3)/2))==0)

                  path1(j+1)=[];

                  j=j-1;

              end

          else

              if all(G(a3:a1,b1:b3)==0)% && all(G(a3:a1,b3)==0) && all(G(a3:a1,ceil((b1+b3)/2))==0)

                  path1(j+1)=[];

                  j=j-1;

              end

          end

          j=j+1;

          long=size(path1,2);

      end

      new_population_1{i}=path1;

  end    

⛄ 运行结果

⛄ 参考文献

[1]周东健, 张兴国, 马海波,等. 基于栅格地图-蚁群算法的机器人最优路径规划[J]. 南通大学学报:自然科学版, 2013, 12(4):4.

❤️ 关注我领取海量matlab电子书和数学建模资料

❤️部分理论引用网络文献,若有侵权联系博主删除

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值