1 简介
移动机器人的避障问题是移动机器人控制领域的研究热点。针对给定的移动机器人避障问题 , 探讨了最短路径及最短时间路径的路径规划问题。对于最短路径问题 ,建立 了简化的路径网格模型 ,将其抽象为由节点及边构成的两维图,再使用经典的Dijkstra算法获得可行的最短路径;对于最短时间路径问题 , 通过分析移动机器人弯道运行的速度曲线, 基于几何方法得出了移动时间与过渡圆弧圆心之间严格的数学关系 , 此后借助matlab优化函数获得最佳的移动路径算法可为类似机器人避障问题的解决提供借鉴。



2 部分代码
clc;clear all;close all;cmap = [1 1 1; ...0 0 0; ...1 0 0; ...0 0 1; ...0 1 0; ...1 1 0; ...0.5 0.5 0.5];colormap(cmap);%% Define a small mapmap_size = 50;map = false(map_size);% Add an obstacle% map (1:20, 6) = true;% map(20:30, 30:35) = true;% map(45:50, 20:30) = true;% map(30:35,1:5) = true;% calculate the potential field for robotsstart_coords = [1, 1];dest_coords = [50, 50];[distanceFromStart_ ] = DijkstraGrid (map, dest_coords, start_coords);distanceFromStart_(dest_coords(1), dest_coords(2)) = 0;disp(distanceFromStart_ );%% path planning for swarm robots using PSO%Problem DefinationCostFunction = distanceFromStart_ ; %CostFunctionnVar = 2; %Number of VariablesVarSize = [1, nVar]; %Matrix Size of Decision Variables%Parameters of PSOnPop = 20; %Population Size(Robot Number)w = 0; %w = 1; %Intertia Coefficientwdamp = 0.9; %Damping Ratio of Inertia Coefficienntc1 = 0; %c1 = 1.5 %Personal Acceleration Coefficienntc2 = 2; %Social Acceleration Coefficient%Initialization%The Particle Templateempty_particle.Position = [];empty_particle.NextPosition = [];empty_particle.Velocity = [];empty_particle.Cost = [];empty_particle.Goal = [];empty_particle.Best.Position = [];empty_particle.Best.Cost = [];empty_particle.Best.Index = [];%Create Population Arrayparticle = repmat(empty_particle, nPop, 1);%Initialize Global BestGlobalBest.Cost = inf;%Initialize Population Members%%Initialize Position and Goalparticle(1).Position = [1, 1]; particle(1).Goal = [50, 50];particle(2).Position = [1, 2]; particle(2).Goal = [50, 49];particle(3).Position = [1, 3]; particle(3).Goal = [50, 48];particle(4).Position = [1, 4]; particle(4).Goal = [50, 47];particle(5).Position = [2, 1]; particle(5).Goal = [50, 46];particle(6).Position = [2, 2]; particle(6).Goal = [49, 50];particle(7).Position = [2, 3]; particle(7).Goal = [49, 49];particle(8).Position = [2, 4]; particle(8).Goal = [49, 48];particle(9).Position = [3, 1]; particle(9).Goal = [49, 47];particle(10).Position = [3, 2]; particle(10).Goal = [49, 46];particle(11).Position = [3, 3]; particle(11).Goal = [48, 50];particle(12).Position = [3, 4]; particle(12).Goal = [48, 49];particle(13).Position = [4, 1]; particle(13).Goal = [48, 48];particle(14).Position = [4, 2]; particle(14).Goal = [48, 47];particle(15).Position = [4, 3]; particle(15).Goal = [48, 46];particle(16).Position = [4, 4]; particle(16).Goal = [47, 50];particle(17).Position = [5, 1]; particle(17).Goal = [47, 49];particle(18).Position = [5, 2]; particle(18).Goal = [47, 48];particle(19).Position = [5, 3]; particle(19).Goal = [47, 47];particle(20).Position = [5, 4]; particle(20).Goal = [47, 46];%initial the map to showmap_plot = zeros(map_size);map_plot(~map) = 1; % Mark free cellsmap_plot(map) = 2; % Mark obstacle cellsfor i = 1:nPop%Initialize Velocityparticle(i).Velocity = zeros(VarSize);%Evaluationparticle(i).Cost = CostFunction(particle(i).Position(1), particle(i).Position(2));%Update the Personal Bestparticle(i).Best.Position = particle(i).Position;particle(i).Best.Cost = particle(i).Cost;particle(i).Best.Index = i;map_plot(particle(i).Position(1), particle(i).Position(2)) = 4;%Update Global Bestif (particle(i).Best.Cost < GlobalBest.Cost )GlobalBest = particle(i).Best;endendmap_plot(GlobalBest.Position(1), GlobalBest.Position(2)) = 3;ShowImage(map_plot);%% Main Loop of PSOwhile (GlobalBest.Position(1) ~= dest_coords(1) || GlobalBest.Position(2) ~= dest_coords(2) )for i = 1:nPop%Judge Leaderif (i == GlobalBest.Index)%Get the Surrouding Positionsneighbours = GetSurroundingPositions(particle(i).Position);p_x = particle(i).Position(1);p_y = particle(i).Position(2);MinCost = inf;end%check if the NextPosition will colllision with other particles or notfor i= 1:nPopif(map_plot(particle(i).NextPosition(1), particle(i).NextPosition(2)) ~=1)particle(i).NextPosition = particle(i).Position;end%Update the map_plotmap_plot(particle(i).Position(1), particle(i).Position(2)) = 1;particle(i).Position = particle(i).NextPosition;map_plot(particle(i).Position(1), particle(i).Position(2)) = 4;end%change the goal according to the position of the particle randomlyif (mod(randperm(100,1), 10) > 4)goal_assigned = GoalAssignment(reshape([particle(1:nPop).Position], 2, nPop)', reshape([particle(1:nPop).Goal], 2, nPop)');for i=1:nPopparticle(i).Goal(:) = goal_assigned(i, :);endend%DisplayShowImage(map_plot);%check the task is finished or notend
3 仿真结果


4 参考文献
[1]邹益民, 高阳, 高碧悦. 一种基于Dijkstra算法的机器人避障问题路径规划[J]. 数学的实践与认识, 2013, 043(010):111-118.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。
本文探讨了移动机器人避障的路径规划问题,使用Dijkstra算法解决最短路径问题,并结合几何方法处理最短时间路径。通过MATLAB实现,运用粒子群优化(PSO)算法进行路径规划,为多机器人避障提供解决方案。
1527

被折叠的 条评论
为什么被折叠?



