【多机器人路径规划】基于Dijkstra算法实现机器人编队路径规划问题附matlab代码

本文探讨了移动机器人避障的路径规划问题,使用Dijkstra算法解决最短路径问题,并结合几何方法处理最短时间路径。通过MATLAB实现,运用粒子群优化(PSO)算法进行路径规划,为多机器人避障提供解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 简介

移动机器人的避障问题是移动机器人控制领域的研究热点。针对给定的移动机器人避障问题 , 探讨了最短路径及最短时间路径的路径规划问题。对于最短路径问题 ,建立 了简化的路径网格模型 ,将其抽象为由节点及边构成的两维图,再使用经典的Dijkstra算法获得可行的最短路径;对于最短时间路径问题 , 通过分析移动机器人弯道运行的速度曲线, 基于几何方法得出了移动时间与过渡圆弧圆心之间严格的数学关系 , 此后借助matlab优化函数获得最佳的移动路径算法可为类似机器人避障问题的解决提供借鉴。

2 部分代码

clc;clear all;close all;cmap = [1 1 1; ...        0 0 0; ...        1 0 0; ...        0 0 1; ...        0 1 0; ...        1 1 0; ...  0.5 0.5 0.5];colormap(cmap);%% Define a small mapmap_size = 50;map = false(map_size);% Add an obstacle% map (1:20, 6) = true;% map(20:30, 30:35) = true;% map(45:50, 20:30) = true;% map(30:35,1:5) = true;% calculate the potential field for  robotsstart_coords = [1, 1];dest_coords  = [50, 50];[distanceFromStart_ ] = DijkstraGrid (map,  dest_coords, start_coords);distanceFromStart_(dest_coords(1), dest_coords(2)) = 0;disp(distanceFromStart_ );%% path planning for swarm robots using PSO%Problem DefinationCostFunction = distanceFromStart_ ;   %CostFunctionnVar = 2;                                              %Number of VariablesVarSize = [1, nVar];                                %Matrix Size of Decision Variables%Parameters of PSOnPop = 20;                                             %Population Size(Robot Number)w = 0;   %w = 1;                                                   %Intertia Coefficientwdamp = 0.9;                                            %Damping Ratio of Inertia Coefficienntc1 = 0;  %c1 = 1.5                                                   %Personal Acceleration Coefficienntc2 = 2;                                                   %Social Acceleration Coefficient%Initialization%The Particle Templateempty_particle.Position = [];empty_particle.NextPosition = [];empty_particle.Velocity = [];empty_particle.Cost = [];empty_particle.Goal = [];empty_particle.Best.Position = [];empty_particle.Best.Cost = [];empty_particle.Best.Index = [];%Create Population Arrayparticle = repmat(empty_particle, nPop, 1);%Initialize Global BestGlobalBest.Cost = inf;%Initialize Population Members%%Initialize Position and Goalparticle(1).Position = [1, 1];    particle(1).Goal   = [50, 50];particle(2).Position = [1, 2];    particle(2).Goal   = [50, 49];particle(3).Position = [1, 3];    particle(3).Goal   = [50, 48];particle(4).Position = [1, 4];    particle(4).Goal   = [50, 47];particle(5).Position = [2, 1];    particle(5).Goal   = [50, 46];particle(6).Position = [2, 2];    particle(6).Goal   = [49, 50];particle(7).Position = [2, 3];    particle(7).Goal   = [49, 49];particle(8).Position = [2, 4];    particle(8).Goal   = [49, 48];particle(9).Position = [3, 1];    particle(9).Goal   = [49, 47];particle(10).Position = [3, 2];  particle(10).Goal = [49, 46];particle(11).Position = [3, 3];  particle(11).Goal = [48, 50];particle(12).Position = [3, 4];  particle(12).Goal = [48, 49];particle(13).Position = [4, 1];  particle(13).Goal = [48, 48];particle(14).Position = [4, 2];  particle(14).Goal = [48, 47];particle(15).Position = [4, 3];  particle(15).Goal = [48, 46];particle(16).Position = [4, 4];  particle(16).Goal = [47, 50];particle(17).Position = [5, 1];  particle(17).Goal = [47, 49];particle(18).Position = [5, 2];  particle(18).Goal = [47, 48];particle(19).Position = [5, 3];  particle(19).Goal = [47, 47];particle(20).Position = [5, 4];  particle(20).Goal = [47, 46];%initial the map to show     map_plot = zeros(map_size);     map_plot(~map) = 1;   % Mark free cells     map_plot(map)  = 2;   % Mark obstacle cells for i = 1:nPop    %Initialize Velocity    particle(i).Velocity = zeros(VarSize);        %Evaluation    particle(i).Cost = CostFunction(particle(i).Position(1), particle(i).Position(2));        %Update the Personal Best    particle(i).Best.Position = particle(i).Position;    particle(i).Best.Cost = particle(i).Cost;    particle(i).Best.Index = i;    map_plot(particle(i).Position(1), particle(i).Position(2)) = 4;        %Update Global Best    if (particle(i).Best.Cost < GlobalBest.Cost )        GlobalBest = particle(i).Best;    endendmap_plot(GlobalBest.Position(1), GlobalBest.Position(2)) = 3;ShowImage(map_plot); %% Main Loop of PSOwhile (GlobalBest.Position(1) ~= dest_coords(1)  || GlobalBest.Position(2) ~= dest_coords(2)  )    for i = 1:nPop        %Judge Leader        if (i == GlobalBest.Index)            %Get the Surrouding Positions             neighbours = GetSurroundingPositions(particle(i).Position);             p_x = particle(i).Position(1);             p_y = particle(i).Position(2);             MinCost = inf;end  %check if the NextPosition will colllision with other particles  or not     for i= 1:nPop        if(map_plot(particle(i).NextPosition(1), particle(i).NextPosition(2)) ~=1)            particle(i).NextPosition = particle(i).Position;        end        %Update the map_plot        map_plot(particle(i).Position(1), particle(i).Position(2)) = 1;        particle(i).Position = particle(i).NextPosition;        map_plot(particle(i).Position(1), particle(i).Position(2)) = 4;    end    %change the goal according to the position of the particle randomly     if (mod(randperm(100,1), 10) > 4)        goal_assigned = GoalAssignment(reshape([particle(1:nPop).Position], 2, nPop)', reshape([particle(1:nPop).Goal], 2, nPop)');        for i=1:nPop            particle(i).Goal(:) = goal_assigned(i, :);         end    end    %Display    ShowImage(map_plot);    %check the task is finished or not    end          

3 仿真结果

4 参考文献

[1]邹益民, 高阳, 高碧悦. 一种基于Dijkstra算法的机器人避障问题路径规划[J]. 数学的实践与认识, 2013, 043(010):111-118.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值