1 简介
支持向量机是一种建立在统计学习理论上的机 器学习方法, 它追求结构化风险最小而不是经验风 险最小, 具有很强的推广能力. SVM 是从线性可分 的二分类问题发展而来的, 其基本思想是寻找两类 样本的最优分类面, 使得两类样本的分类间隔 ( margin) 最大. 以图 1 所示为例. 图中: 实心点和空 心点分别代表两类样本; H 为分类线, H1 和 H2 分 别为各类中离分类线最近的样本且平行于分类线的 直线, 它们之间的距离称为分类间隔. 所谓最优分类 线就是要求分类线不但能将两类正确分开, 而且使 分类间隔最大.
2 部分代码
function[Score,Position,Convergence]=SOA(Search_Agents,Max_iterations,Lower_bound,Upper_bound,dimension,objective)
Position=zeros(1,dimension);
Score=inf;
Positions=init(Search_Agents,dimension,Upper_bound,Lower_bound);
Convergence=zeros(1,Max_iterations);
l=0;
while l<Max_iterations
for i=1:size(Positions,1)
Flag4Upper_bound=Positions(i,:)>Upper_bound;
Flag4Lower_bound=Positions(i,:)<Lower_bound;
Positions(i,:)=(Positions(i,:).*(~(Flag4Upper_bound+Flag4Lower_bound)))+Upper_bound.*Flag4Upper_bound+Lower_bound.*Flag4Lower_bound;
fitness=objective(Positions(i,:));
if fitness<Score
Score=fitness;
Position=Positions(i,:);
end
end
Fc=2-l*((2)/Max_iterations);
for i=1:size(Positions,1)
for j=1:size(Positions,2)
r1=rand();
r2=rand();
A1=2*Fc*r1-Fc;
C1=2*r2;
b=1;
ll=(Fc-1)*rand()+1;
D_alphs=Fc*Positions(i,j)+A1*((Position(j)-Positions(i,j)));
X1=D_alphs*exp(b.*ll).*cos(ll.*2*pi)+Position(j);
Positions(i,j)=X1;
end
end
l=l+1;
Convergence(l)=Score;
end
3 仿真结果
4 参考文献
[1]屈玉涛, 邓万宇. 基于matlab的svm分类预测实现[J]. 信息通信, 2017(3):2.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。