【SVM分类】基于海鸥算法优化支持向量机SVM实现分类附matlab的代码

 1 简介

支持向量机是一种建立在统计学习理论上的机 器学习方法, 它追求结构化风险最小而不是经验风 险最小, 具有很强的推广能力. SVM 是从线性可分 的二分类问题发展而来的, 其基本思想是寻找两类 样本的最优分类面, 使得两类样本的分类间隔 ( margin) 最大. 以图 1 所示为例. 图中: 实心点和空 心点分别代表两类样本; H 为分类线, H1 和 H2 分 别为各类中离分类线最近的样本且平行于分类线的 直线, 它们之间的距离称为分类间隔. 所谓最优分类 线就是要求分类线不但能将两类正确分开, 而且使 分类间隔最大.

​2 部分代码​

function[Score,Position,Convergence]=SOA(Search_Agents,Max_iterations,Lower_bound,Upper_bound,dimension,objective)Position=zeros(1,dimension);Score=inf; Positions=init(Search_Agents,dimension,Upper_bound,Lower_bound);Convergence=zeros(1,Max_iterations);l=0;while l<Max_iterations    for i=1:size(Positions,1)                  Flag4Upper_bound=Positions(i,:)>Upper_bound;        Flag4Lower_bound=Positions(i,:)<Lower_bound;        Positions(i,:)=(Positions(i,:).*(~(Flag4Upper_bound+Flag4Lower_bound)))+Upper_bound.*Flag4Upper_bound+Lower_bound.*Flag4Lower_bound;                               fitness=objective(Positions(i,:));                if fitness<Score             Score=fitness;             Position=Positions(i,:);        end            end            Fc=2-l*((2)/Max_iterations);         for i=1:size(Positions,1)        for j=1:size(Positions,2)                                        r1=rand();             r2=rand();                         A1=2*Fc*r1-Fc;             C1=2*r2;             b=1;                         ll=(Fc-1)*rand()+1;                     D_alphs=Fc*Positions(i,j)+A1*((Position(j)-Positions(i,j)));                               X1=D_alphs*exp(b.*ll).*cos(ll.*2*pi)+Position(j);            Positions(i,j)=X1;                    end    end    l=l+1;        Convergence(l)=Score;end

3 仿真结果

4 参考文献

[1]屈玉涛, 邓万宇. 基于matlab的svm分类预测实现[J]. 信息通信, 2017(3):2.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

5 代码下载

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值