1 简介
黏菌优化算法(Slime mould algorithm,SMA)由 Li等于 2020 年提出,其灵感来自于黏菌的扩散和觅食行为,属于元启发算法。具有收敛速度快,寻优能力强的特点。黏菌优化算法用数学模型模仿黏菌觅食行为和形态变化, SMA 包括三个阶段,分别为接近食物阶段、包围食物阶段和抓取食物阶段。




2 部分代码
%% "MOSMA: Multi-objective Slime Mould Algorithm Based on Elitist Non-dominated Sorting,"%function f = MOSMA(dim,M,lb,ub,N,Max_iter,ishow)X = zeros(N,dim);Sol = zeros(N,dim);weight = ones(N,dim);%fitness weight of each slime mold%% Initialize the populationfor i=1:Nx(i,:)=lb+(ub-lb).*rand(1,dim);f(i,1:M) = evaluate_objective(x(i,:), M);endnew_Sol=[x f];new_Sol = solutions_sorting(new_Sol, M, dim);for i = 1 : Max_iter[SmellOrder,SmellIndex] = sort(Sol);worstFitness = SmellOrder(N);bestFitness = SmellOrder(1);S=bestFitness-worstFitness+eps; % plus eps to avoid denominator zerofor k=1:Nif k<=(N/2)weight(SmellIndex(k),:) = 1+rand()*log10((bestFitness-SmellOrder(k))/(S)+1);elseweight(SmellIndex(k),:) = 1-rand()*log10((bestFitness-SmellOrder(k))/(S)+1);endenda = atanh(-(i/Max_iter)+1);b = 1-i/Max_iter;for j=1:Nbest=(new_Sol(j,1:dim) - new_Sol(1,(1:dim)));if rand<0.03X(j,:) = (ub-lb).*rand+lb;elsep =tanh(abs(f(j)-best));vb = unifrnd(-a,a,1,dim);vc = unifrnd(-b,b,1,dim);r = rand();A = randi([1,N]);B = randi([1,N]);if r<pX(j,:) = best+ vb.*(weight(j,:).*X(A,:)-X(B,:));elseX(j,:) = best+ vc.*(weight(j,:).*X(A,:)-X(B,:));endendSol(j,1:dim) = X(j,1:dim);Flag4ub=Sol(j,1:dim)>ub;Flag4lb=Sol(j,1:dim)<lb;Sol(j,1:dim)=(Sol(j,1:dim).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;%% Evalute the fitness/function values of the new populationSol(j, dim+1:M+dim) = evaluate_objective(Sol(j,1:dim),M);if Sol(j,dim+1:dim+M) <= new_Sol(1,(dim+1:dim+M))new_Sol(1,1:(dim+M)) = Sol(j,1:(dim+M));endend%% ! Very important to combine old and new bats !Sort_bats(1:N,:) = new_Sol;Sort_bats((N + 1):(2*N), 1:M+dim) = Sol;%% Non-dominated sorting process (a separate function/subroutine)Sorted_bats = solutions_sorting(Sort_bats, M, dim);%% Select npop solutions among a combined population of 2*npop solutionsnew_Sol = cleanup_batspop(Sorted_bats, M, dim, N);if rem(i, ishow) == 0fprintf('Generation: %d\n', i);endendf=new_Sol;
3 仿真结果

4 参考文献
[1]郭雨鑫, 刘升, 张磊,等. 精英反向与二次插值改进的黏菌算法[J]. 计算机应用研究, 2021, 38(12):6.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。
介绍了一种新的元启发式优化算法——黏菌优化算法(SMA),该算法基于黏菌的扩散和觅食行为,具有快速收敛和强大的寻优能力。通过模拟黏菌的三个阶段:接近食物、包围食物和抓取食物来实现优化过程。
1268

被折叠的 条评论
为什么被折叠?



