1 简介
分布式能源系统是能源利用的未来趋势,其中协同经济优化运行是实现能量供需平衡、 降低能源站成本的关键.首先从冷热电协同优化运行入手,建立了包括蓄电池、海水发电以及风光储在内的分布式能源协同运行优化模型,然后考虑设备约束和系统约束,目标函数综合考虑运行成本和环境成本,采用粒子群优化算法求解.结果表明,针对国内某示范园区分布式能源系统进行优化验证,所提方法能够有效降低总成本,提高分布式能源系统经济效益,促进可再生能源充分消纳.
2 部分代码
clearclcclose all%% 参数初始化pso_option = struct('c1',2.05,'c2',2.05,'maxgen',5000,'sizepop',30, ...'k',0.6,'wV',1.1,'wP',1.1,'v',5, ...'popmax',30,'popmin',-30);D=10;Vmax = pso_option.k*pso_option.popmax;Vmin = -Vmax ;eps = 10^(-5);%% 产生初始粒子和速度for i=1:pso_option.sizepop% 随机产生种群和速度pop(i,:) = (pso_option.popmax-pso_option.popmin)*rand(1,D)+pso_option.popmin;V(i,:)=Vmax*rands(1,D);% 计算初始适应度fitness(i)=myfunc_fit1(pop(i,:));end% 找极值和极值点[global_fitness bestindex]=min(fitness); % 全局极值local_fitness=fitness; % 个体极值初始化global_x=pop(bestindex,:); % 全局极值点local_x=pop; % 个体极值点初始化% 每一代种群的平均适应度avgfitness_gen = zeros(1,pso_option.maxgen);%% 迭代寻优for i=1:pso_option.maxgenfor j=1:pso_option.sizepop%速度更新V(j,:) = pso_option.wV*V(j,:) + pso_option.c1*rand*(local_x(j,:) - pop(j,:)) + pso_option.c2*rand*(global_x - pop(j,:));if find(V(j,:) > Vmax)V_maxflag=find(V(j,:) > Vmax);V(j,V_maxflag) = Vmax;endif find(V(j,1) < Vmin)V_minflag=find(V(j,1) < Vmin);V(j,V_minflag) = Vmin;end%种群更新pop(j,:)=pop(j,:) + pso_option.wP*V(j,:);if find(pop(j,:) > pso_option.popmax)pop_maxflag=find(pop(j,:) > pso_option.popmax);pop(j,pop_maxflag) = pso_option.popmax;endif find(pop(j,:) < pso_option.popmin)pop_minflag=find(pop(j,:) < pso_option.popmin);pop(j,pop_minflag) = pso_option.popmin;end% 自适应粒子变异if rand>0.5k=ceil(2*rand);pop(j,k) = (pso_option.popmax-pso_option.popmin)*rand + pso_option.popmin;end%适应度值fitness(j)=myfunc_fit1(pop(j,:));%个体最优更新if fitness(j) < local_fitness(j)local_x(j,:) = pop(j,:);local_fitness(j) = fitness(j);endif fitness(j) == local_fitness(j) && length(pop(j,:) < local_x(j,:))local_flag=find(pop(j,:) < local_x(j,:));local_x(j,local_flag) = pop(j,local_flag);local_fitness(j) = fitness(j);end%群体最优更新if fitness(j) < global_fitnessglobal_x = pop(j,:);global_fitness = fitness(j);end% if abs( fitness(j)-global_fitness )<=eps && length(pop(j,:) < global_x)% global_flag=find(pop(j,:) < global_x);% global_x(global_flag) = pop(j,global_flag);% global_fitness = fitness(j);% endendfit_gen(i)=global_fitness;avgfitness_gen(i) = sum(fitness)/pso_option.sizepop;endxlswrite('fit_gen.xlsx',fit_gen);xlswrite('avgfitness_gen.xlsx',avgfitness_gen);%% 结果分析figure;hold on;plot(fit_gen,'r*-','LineWidth',1.5);plot(avgfitness_gen,'o-','LineWidth',1.5);legend('最佳适应度','平均适应度');xlabel('进化代数','FontSize',12);ylabel('适应度','FontSize',12);grid on;bestX = global_x;bestCVmse = fit_gen(pso_option.maxgen);line1 = '适应度曲线MSE[PSOmethod]';line2 = ['(参数c1=',num2str(pso_option.c1), ...',c2=',num2str(pso_option.c2),',终止代数=', ...num2str(pso_option.maxgen),',种群数量pop=', ...num2str(pso_option.sizepop),')'];title({line1;line2},'FontSize',12);
3 仿真结果


4 参考文献
[1]王禹, 彭道刚, 姚峻,等. 基于改进粒子群算法的分布式能源系统协同优化运行研究[J]. 浙江电力, 2019, 038(002):33-39.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。
该文探讨了分布式能源系统的协同优化运行,构建了包含电池、海水发电和风光储的模型,运用粒子群优化算法寻求运行成本和环境成本的最小化。实验证明,该方法能有效降低成本,提高系统经济效益,并促进可再生能源消纳。
276

被折叠的 条评论
为什么被折叠?



