积分中值定理
习题收集
大学教材全解高等数学 延边大学出版社
1.设
a
>
b
>
0
a>b>0
a>b>0,证明
a
−
b
a
<
ln
a
b
<
a
−
b
b
\frac{a-b}{a}<\ln\frac{a}{b}<\frac{a-b}{b}
aa−b<lnba<ba−b
解
构造辅助函数
f
(
x
)
=
ln
(
x
)
f(x)=\ln(x)
f(x)=ln(x),则
f
(
x
)
f(x)
f(x)在
[
b
,
a
]
[b,a]
[b,a]上连续,在
(
b
,
a
)
(b,a)
(b,a)内可导,则
f
(
x
)
=
ln
x
f(x)=\ln x
f(x)=lnx在
[
b
,
a
]
[b,a]
[b,a]上满足拉格朗日中值定理的条件,故至少存在一点
ξ
∈
(
b
,
a
)
\xi\in(b,a)
ξ∈(b,a),使得
f
(
a
)
−
f
(
b
)
a
−
b
=
f
′
(
ξ
)
\frac{f(a)-f(b)}{a-b}=f^{\prime}(\xi)
a−bf(a)−f(b)=f′(ξ),即
ln
a
−
ln
b
a
−
b
=
1
ξ
\frac{\ln a-\ln b}{a-b}=\frac{1}{\xi}
a−blna−lnb=ξ1
因为
1
a
<
1
ξ
<
1
b
\frac{1}{a}<\frac{1}{\xi}<\frac{1}{b}
a1<ξ1<b1,所以
1
a
<
ln
a
−
ln
b
a
−
b
<
1
b
\frac{1}{a}<\frac{\ln a-\ln b}{a-b}<\frac{1}{b}
a1<a−blna−lnb<b1,即
a
−
b
a
<
ln
a
b
<
a
−
b
b
\frac{a-b}{a}<\ln \frac{a}{b}<\frac{a-b}{b}
aa−b<lnba<ba−b
2.证明不等式
x
1
+
x
2
<
arctan
x
<
x
(
x
>
0
)
\frac{x}{1+x^2}<\arctan x<x(x>0)
1+x2x<arctanx<x(x>0)
解
做辅助函数
f
(
x
)
=
arctan
x
(
x
>
0
)
f(x)=\arctan x(x>0)
f(x)=arctanx(x>0),因
f
(
x
)
f(x)
f(x)在
[
0
,
x
]
[0,x]
[0,x]上满足拉格朗日中值定理条件,因此有
f
(
x
)
−
f
(
0
)
=
f
′
(
ξ
)
(
x
−
0
)
,
ξ
∈
(
0
,
x
)
f(x)-f(0)=f^{\prime}(\xi)(x-0),\xi\in(0,x)
f(x)−f(0)=f′(ξ)(x−0),ξ∈(0,x),
即
arctan
x
−
arctan
0
=
x
1
+
ξ
2
\arctan x-\arctan 0=\frac{x}{1+\xi^2}
arctanx−arctan0=1+ξ2x
亦即
arctan
x
=
x
1
+
ξ
2
\arctan x= \frac{x}{1+\xi^2}
arctanx=1+ξ2x
因
0
<
ξ
<
x
0<\xi<x
0<ξ<x,有
1
1
+
x
2
<
1
1
+
ξ
2
<
1
\frac{1}{1+x^2}<\frac{1}{1+\xi^2}<1
1+x21<1+ξ21<1,所以可得
x
1
+
x
2
<
arctan
x
<
x
(
x
>
0
)
\frac{x}{1+x^2}<\arctan x<x(x>0)
1+x2x<arctanx<x(x>0)
3.已知函数 f ( x ) f(x) f(x)在 [ 0 , 1 ] [0,1] [0,1]连续,在 ( 0 , 1 ) (0,1) (0,1)上可导,且 f ( 0 ) = 1 , f ( 1 ) = 1 f(0)=1,f(1)=1 f(0)=1,f(1)=1,证明:
- 存在 ξ ∈ ( 0 , 1 ) \xi \in(0,1) ξ∈(0,1),使得 f ( ξ ) = 1 − ξ f(\xi)=1-\xi f(ξ)=1−ξ;
- 存在两个不同的点
η
,
ξ
∈
(
0
,
1
)
\eta,\xi\in(0,1)
η,ξ∈(0,1),使得
f ′ ( η ) f ′ ( ξ ) = 1 f^{\prime}(\eta)f^{\prime}(\xi)=1 f′(η)f′(ξ)=1
(
1
)
(1)
(1)令
F
(
x
)
=
f
(
x
)
−
1
+
x
F(x)=f(x)-1+x
F(x)=f(x)−1+x,有
F
(
x
)
F(x)
F(x)在
[
0
,
1
]
[0,1]
[0,1]上连续,且
F
(
0
)
=
f
(
0
)
−
1
=
−
1
<
0
F(0)=f(0)-1=-1<0
F(0)=f(0)−1=−1<0
F
(
1
)
=
f
(
1
)
−
1
+
1
=
f
(
1
)
=
1
>
0
F(1)=f(1)-1+1=f(1)=1>0
F(1)=f(1)−1+1=f(1)=1>0
则
F
(
0
)
F
(
1
)
<
0
F(0)F(1)<0
F(0)F(1)<0,于是由介值定理知,存在
ξ
∈
(
0
,
1
)
\xi\in(0,1)
ξ∈(0,1),使得
F
(
ξ
)
=
0
F(\xi)=0
F(ξ)=0,即
f
(
ξ
)
=
1
−
ξ
f(\xi)=1-\xi
f(ξ)=1−ξ。
(
2
)
f
(
x
)
(2)f(x)
(2)f(x)在
[
0
,
ξ
]
[0,\xi]
[0,ξ]和
[
ξ
,
1
]
[\xi,1]
[ξ,1]上分别应用拉格朗日中值定理知,存在两个不同的点
η
∈
(
0
,
ξ
)
,
ζ
∈
(
ξ
,
1
)
\eta\in(0,\xi),\zeta\in(\xi,1)
η∈(0,ξ),ζ∈(ξ,1),使得
f
′
(
η
)
=
f
(
ξ
)
−
f
(
0
)
ξ
−
0
=
(
1
−
ξ
)
−
0
ξ
=
1
−
ξ
ξ
f^{\prime}(\eta)=\frac{f(\xi)-f(0)}{\xi-0}=\frac{(1-\xi)-0}{\xi}=\frac{1-\xi}{\xi}
f′(η)=ξ−0f(ξ)−f(0)=ξ(1−ξ)−0=ξ1−ξ
f
′
(
ζ
)
=
f
(
1
)
−
f
(
ξ
)
1
−
ξ
=
1
−
(
1
−
ξ
)
1
−
ξ
=
ξ
1
−
ξ
f^{\prime}(\zeta)=\frac{f(1)-f(\xi)}{1-\xi}=\frac{1-(1-\xi)}{1-\xi}=\frac{\xi}{1-\xi}
f′(ζ)=1−ξf(1)−f(ξ)=1−ξ1−(1−ξ)=1−ξξ
于是
f
′
(
η
)
f
′
(
ζ
)
=
1
−
ξ
ξ
⋅
ξ
1
−
ξ
=
1
f^{\prime}(\eta) f^{\prime}(\zeta)= \frac{1-\xi}{\xi}\cdot \frac{\xi}{1-\xi}=1
f′(η)f′(ζ)=ξ1−ξ⋅1−ξξ=1
高等数学学习辅导讲义 浙江大学出版社
4.设
f
(
x
)
f(x)
f(x)和
g
(
x
)
g(x)
g(x)在
[
a
,
b
]
[a,b]
[a,b]上存在二阶导数,并且
g
′
′
(
x
)
≠
0
g^{\prime\prime}(x)\neq0
g′′(x)=0,
f
(
a
)
=
f
(
b
)
=
g
(
a
)
=
g
(
b
)
=
0
f(a)=f(b)=g(a)=g(b)=0
f(a)=f(b)=g(a)=g(b)=0
试证:
(
1
)
(1)
(1)在
(
a
,
b
)
(a,b)
(a,b)内,
g
(
x
)
≠
0
g(x)\neq0
g(x)=0;
(
2
)
(2)
(2)在
(
a
,
b
)
(a,b)
(a,b)内,至少存在一点
ξ
∈
(
a
,
b
)
\xi\in(a,b)
ξ∈(a,b),使
f
(
ξ
)
g
(
ξ
)
=
f
′
′
(
ξ
)
g
′
′
(
ξ
)
\frac{f(\xi)}{g(\xi)}=\frac {f^{\prime\prime}(\xi)}{g^{\prime\prime}(\xi)}
g(ξ)f(ξ)=g′′(ξ)f′′(ξ)
证明
(
1
)
(1)
(1)用反证法。假设存在
x
0
∈
(
a
,
b
)
x_0\in(a,b)
x0∈(a,b),使
g
(
x
0
)
=
0
g(x_0)=0
g(x0)=0。
g
(
x
)
g(x)
g(x)在
[
a
,
x
0
]
[a,x_0]
[a,x0]上满足罗尔定理条件,至少存在一点
c
1
∈
(
a
,
x
0
)
c_1\in(a,x_0)
c1∈(a,x0),使
g
′
(
c
1
)
=
0
g^{\prime}(c_1)=0
g′(c1)=0;
g
(
x
)
g(x)
g(x)在
[
x
0
,
b
]
[x_0,b]
[x0,b]上满足罗尔定理条件,至少存在一点
c
2
∈
(
x
0
,
b
)
c_2\in(x_0,b)
c2∈(x0,b),使
g
′
(
c
2
)
=
0
g^{\prime}(c_2)=0
g′(c2)=0;
g
′
(
x
)
g^{\prime}(x)
g′(x)在
[
c
1
,
c
2
]
[c_1,c_2]
[c1,c2]上满足罗尔定理条件,至少存在一点
c
∈
(
c
1
,
c
2
)
c\in(c_1,c_2)
c∈(c1,c2),使
g
′
′
(
c
)
=
0
g^{\prime\prime}(c)=0
g′′(c)=0;
与对每一个
x
∈
(
a
,
b
)
,
g
′
′
(
x
)
≠
0
x\in(a,b),g^{\prime\prime}(x)\neq0
x∈(a,b),g′′(x)=0相矛盾,所以假设不成立,即
∀
x
∈
(
a
,
b
)
,
g
(
x
)
≠
0
\forall x\in(a,b),g(x)\neq0
∀x∈(a,b),g(x)=0。
(
2
)
(2)
(2)要证
f
(
ξ
)
g
(
ξ
)
=
f
′
′
(
ξ
)
g
′
′
(
ξ
)
\frac{f(\xi)}{g(\xi)}=\frac {f^{\prime\prime}(\xi)}{g^{\prime\prime}(\xi)}
g(ξ)f(ξ)=g′′(ξ)f′′(ξ)成立,由
g
(
x
)
≠
0
,
g
′
′
(
x
)
≠
0
g(x)\neq 0, g^{\prime\prime}(x)\neq 0
g(x)=0,g′′(x)=0,只要证
f
(
ξ
)
g
′
′
(
ξ
)
−
g
(
ξ
)
f
′
′
(
ξ
)
=
0
f(\xi) g^{\prime\prime}(\xi)-g(\xi) f^{\prime\prime}(\xi) =0
f(ξ)g′′(ξ)−g(ξ)f′′(ξ)=0成立,只要证
[
f
(
x
)
g
′
′
(
x
)
−
g
(
x
)
f
′
′
(
x
)
]
∣
x
=
ξ
=
0
\left.\left[f(x) g^{\prime\prime}(x)-g(x) f^{\prime\prime}(x) \right]\right|_{x=\xi}=0
[f(x)g′′(x)−g(x)f′′(x)]∣x=ξ=0成立,只要证
(
f
(
x
)
g
′
(
x
)
−
g
(
x
)
f
′
(
x
)
)
′
∣
x
=
ξ
=
0
\left.\left(f(x) g^{\prime}(x)-g(x) f^{\prime}(x) \right)^{\prime}\right|_{x=\xi}=0
(f(x)g′(x)−g(x)f′(x))′∣∣x=ξ=0成立,设
F
(
x
)
=
f
(
x
)
g
′
(
x
)
−
g
(
x
)
f
′
(
x
)
F(x)= f(x) g^{\prime}(x) -g(x) f^{\prime}(x)
F(x)=f(x)g′(x)−g(x)f′(x),只要证
F
′
(
ξ
)
=
0
F^{\prime}(\xi)=0
F′(ξ)=0成立,
F
(
x
)
F(x)
F(x)在
[
a
,
b
]
[a,b]
[a,b]上连续,在
(
a
,
b
)
(a,b)
(a,b)内可导,且
F
(
a
)
=
F
(
b
)
=
0
F(a)=F(b)=0
F(a)=F(b)=0,由罗尔定理知,至少存在一点
ξ
∈
(
a
,
b
)
\xi\in(a,b)
ξ∈(a,b),使
F
′
(
ξ
)
=
0
F^{\prime}(\xi)=0
F′(ξ)=0成立
5.设
f
(
x
)
f\left( x \right)
f(x) 在
[
a
,
b
]
\left[ a,b \right]
[a,b]上具有二阶导数,且
f
(
a
)
=
f
(
b
)
=
0
f\left( a \right) =f\left( b \right) =0
f(a)=f(b)=0,
f
′
(
a
)
f
′
(
b
)
>
0
f^{\prime}\left( a \right) f^{\prime}\left( b \right) >0
f′(a)f′(b)>0。证明:存在
ξ
∈
(
a
,
b
)
\xi \in \left( a,b \right)
ξ∈(a,b)和
η
∈
(
a
,
b
)
\eta \in \left( a,b \right)
η∈(a,b),使
f
(
ξ
)
=
0
f\left( \xi \right) =0
f(ξ)=0,
f
′
′
(
η
)
=
0
f^{\prime\prime}\left( \eta \right) =0
f′′(η)=0。
证明
由
f
′
(
a
)
f
′
(
b
)
>
0
f^{\prime}\left( a \right) f^{\prime}\left( b \right) >0
f′(a)f′(b)>0,不妨设
f
′
(
a
)
>
0
,
f
′
(
b
)
>
0
f^{\prime}(a)>0,f^{\prime}(b)>0
f′(a)>0,f′(b)>0,由于
lim
x
→
a
+
f
(
x
)
−
f
(
a
)
x
−
a
=
lim
x
→
a
+
f
(
x
)
x
−
a
=
f
′
(
a
)
>
0
\lim\limits_{x \to a^+}{\frac{f(x)-f(a)}{x-a}}= \lim\limits_{x \to a^+}{\frac{f(x)}{x-a}}=f^{\prime}(a)>0
x→a+limx−af(x)−f(a)=x→a+limx−af(x)=f′(a)>0,由保号性,存在
δ
1
>
0
\delta_1>0
δ1>0,当
x
∈
(
a
,
a
+
δ
1
)
x\in(a,a+\delta_1)
x∈(a,a+δ1)时,
f
(
x
)
x
−
a
>
0
\frac{f(x)}{x-a}>0
x−af(x)>0,而
x
−
a
>
0
x-a>0
x−a>0,知
f
(
x
)
>
0
f(x)>0
f(x)>0,取
a
1
∈
(
a
,
a
+
δ
1
)
,
f
(
a
1
)
>
0
a_1\in(a,a+\delta_1),f(a_1)>0
a1∈(a,a+δ1),f(a1)>0;
又
lim
x
→
b
−
f
(
x
)
−
f
(
b
)
x
−
b
=
lim
x
→
b
−
f
(
x
)
x
−
b
=
f
′
(
b
)
>
0
\lim\limits_{x \to b^-}{\frac{f(x)-f(b)}{x-b}}= \lim\limits_{x \to b^-}{\frac{f(x)}{x-b}}=f^{\prime}(b)>0
x→b−limx−bf(x)−f(b)=x→b−limx−bf(x)=f′(b)>0,由保号性,存在
δ
2
>
0
(
a
1
<
b
−
δ
2
)
\delta_2>0(a_1<b-\delta_2)
δ2>0(a1<b−δ2),当
x
∈
(
b
−
δ
2
,
b
)
x\in(b-\delta_2,b)
x∈(b−δ2,b)时,
f
(
x
)
x
−
b
>
0
\frac{f(x)}{x-b} >0
x−bf(x)>0,而
x
−
b
<
0
x-b<0
x−b<0,知
f
(
x
)
<
0
f(x)<0
f(x)<0,取
b
1
∈
(
b
−
δ
2
,
b
)
,
f
(
b
1
)
<
0
b_1\in (b-\delta_2,b) ,f(b_1)<0
b1∈(b−δ2,b),f(b1)<0,
f
(
x
)
f(x)
f(x)在
[
a
1
,
b
1
]
[a_1,b_1]
[a1,b1]上满足根的存在定理条件,则至少存在一点
ξ
∈
(
a
,
b
)
\xi\in(a,b)
ξ∈(a,b),使
f
(
ξ
)
=
0
f(\xi)=0
f(ξ)=0。
f
(
x
)
f(x)
f(x)在
[
a
,
ξ
]
[a,\xi]
[a,ξ]上满足罗尔定理,至少存在一点
c
1
∈
(
a
,
ξ
)
c_1\in(a,\xi)
c1∈(a,ξ),使
f
′
(
c
1
)
=
0
f^{\prime}(c_1)=0
f′(c1)=0;
f
(
x
)
f(x)
f(x)在
[
ξ
,
b
]
[\xi,b]
[ξ,b]上满足罗尔定理,至少存在一点
c
2
∈
(
ξ
,
b
)
c_2\in(\xi,b)
c2∈(ξ,b),使
f
′
(
c
2
)
=
0
f^{\prime}(c_2)=0
f′(c2)=0;
f
′
(
x
)
f^{\prime}(x)
f′(x)在
[
c
1
,
c
2
]
[c_1,c_2]
[c1,c2]上满足罗尔定理,至少存在一点
η
∈
(
c
1
,
c
2
)
⊂
(
a
,
b
)
\eta\in(c_1,c_2)\subset(a,b)
η∈(c1,c2)⊂(a,b),使
f
′
′
(
η
)
=
0
f^{\prime\prime}(\eta)=0
f′′(η)=0。
6.设
f
(
x
)
,
g
(
x
)
f(x),g(x)
f(x),g(x)可导,证明在
f
(
x
)
f(x)
f(x)的两个零值点之间必有函数
f
′
(
x
)
+
f
(
x
)
g
′
(
x
)
f^{\prime}(x)+f(x)g^{\prime}(x)
f′(x)+f(x)g′(x)的零值点。
证明
由题意知
∃
x
1
<
x
2
\exists \,x_1<x_2
∃x1<x2,使
f
(
x
1
)
=
0
,
f
(
x
2
)
=
0
f(x_1)=0,f(x_2)=0
f(x1)=0,f(x2)=0,要证明至少存在一点
ξ
∈
(
x
1
,
x
2
)
\xi\in(x_1,x_2)
ξ∈(x1,x2),使
f
′
(
ξ
)
+
f
(
ξ
)
g
′
(
ξ
)
f^{\prime}(\xi)+f(\xi)g^{\prime}(\xi)
f′(ξ)+f(ξ)g′(ξ)成立,由
e
g
(
ξ
)
≠
0
e^{g(\xi)}\neq 0
eg(ξ)=0,只要证
[
f
′
(
ξ
)
+
f
(
ξ
)
g
′
(
ξ
)
]
e
g
(
ξ
)
=
0
\left[f^{\prime}(\xi)+f(\xi)g^{\prime}(\xi)\right]e^{g(\xi)}=0
[f′(ξ)+f(ξ)g′(ξ)]eg(ξ)=0成立,只要证
[
f
′
(
x
)
e
g
(
x
)
+
f
(
x
)
g
′
(
x
)
e
g
(
x
)
]
∣
x
=
ξ
=
0
\left.\left[f^{\prime}(x)e^{g(x)}+f(x)g^{\prime}(x)e^{g(x)}\right]\right|_{x=\xi}=0
[f′(x)eg(x)+f(x)g′(x)eg(x)]∣∣x=ξ=0成立,只要证
[
f
(
x
)
e
g
(
x
)
]
′
∣
x
=
ξ
=
0
\left.[f(x)e^{g(x)}]^{\prime}\right|_{x=\xi}=0
[f(x)eg(x)]′∣∣x=ξ=0成立,设
F
(
x
)
=
f
(
x
)
e
g
(
x
)
F(x)=f(x)e^{g(x)}
F(x)=f(x)eg(x),只要证
F
′
(
ξ
)
=
0
F^{\prime}(\xi)=0
F′(ξ)=0
成立,
F
(
x
)
F(x)
F(x)在
[
x
1
,
x
2
]
[x_1,x_2]
[x1,x2]上连续,在
(
x
1
,
x
2
)
(x_1,x_2)
(x1,x2)内可导,
F
(
x
1
)
=
F
(
x
2
)
=
0
F(x_1)=F(x_2)=0
F(x1)=F(x2)=0,由罗尔定理知,至少存在一点
ξ
∈
(
x
1
,
x
2
)
\xi\in(x_1,x_2)
ξ∈(x1,x2),使
F
′
(
ξ
)
=
0
F^{\prime}(\xi)=0
F′(ξ)=0。
7.若
f
(
x
)
,
g
(
x
)
f(x),g(x)
f(x),g(x)在
[
a
,
b
]
[a,b]
[a,b]上可导,且
g
′
(
x
)
≠
0
g^{\prime}(x)\neq 0
g′(x)=0,则至少存在一点
ξ
∈
(
a
,
b
)
\xi\in(a,b)
ξ∈(a,b),使
f
(
a
)
−
f
(
ξ
)
g
(
ξ
)
−
g
(
b
)
=
f
′
(
ξ
)
g
′
(
ξ
)
\frac{f(a)-f(\xi)}{g(\xi)-g(b)}=\frac{f^{\prime}(\xi)}{g^{\prime}(\xi)}
g(ξ)−g(b)f(a)−f(ξ)=g′(ξ)f′(ξ)
证明
要证结论成立,只要证
[
f
(
a
)
−
f
(
ξ
)
]
g
′
(
ξ
)
−
[
g
(
ξ
)
−
g
(
b
)
]
f
′
(
ξ
)
=
0
\left[f(a)-f(\xi)\right]g^{\prime}(\xi)-[g(\xi)-g(b)]f^{\prime}(\xi)=0
[f(a)−f(ξ)]g′(ξ)−[g(ξ)−g(b)]f′(ξ)=0成立,只要证
{
[
f
(
a
)
−
f
(
x
)
]
g
′
(
x
)
−
[
g
(
x
)
−
g
(
b
)
]
f
′
(
x
)
}
x
=
ξ
=
0
\left\{[f(a)-f(x)]g^{\prime}(x)-[g(x)-g(b)]f^{\prime}(x)\right\}_{x=\xi}=0
{[f(a)−f(x)]g′(x)−[g(x)−g(b)]f′(x)}x=ξ=0成立,只要证
{
[
f
(
a
)
−
f
(
x
)
]
[
g
(
x
)
−
g
(
b
)
]
}
′
∣
x
=
ξ
=
0
\left. \left\{[f(a)-f(x)][g(x)-g(b)]\right\}^{\prime}\right|_{x=\xi}=0
{[f(a)−f(x)][g(x)−g(b)]}′∣∣x=ξ=0成立,令
F
(
x
)
=
[
f
(
a
)
−
f
(
x
)
]
[
g
(
x
)
−
g
(
b
)
]
F(x)= [f(a)-f(x)][g(x)-g(b)]
F(x)=[f(a)−f(x)][g(x)−g(b)],只要证
F
′
(
ξ
)
=
0
F^{\prime}(\xi)=0
F′(ξ)=0
成立,
F
(
x
)
F(x)
F(x)在
[
a
,
b
]
[a,b]
[a,b]上连续,在
(
a
,
b
)
(a,b)
(a,b)内可导,
F
(
a
)
=
F
(
b
)
=
0
F(a)=F(b)=0
F(a)=F(b)=0,由罗尔定理知,至少存在一点
ξ
∈
(
a
,
b
)
\xi\in(a,b)
ξ∈(a,b),使
F
′
(
ξ
)
=
0
F^{\prime}(\xi)=0
F′(ξ)=0。
8.设
f
(
x
)
f(x)
f(x)在闭区间
[
x
1
,
x
2
]
[x_1,x_2]
[x1,x2]上可微,并且
x
1
x
2
>
0
x_1x_2>0
x1x2>0,证明:在
(
x
1
,
x
2
)
(x_1,x_2)
(x1,x2)内至少存在一点
ξ
\xi
ξ,使
1
x
1
−
x
2
∣
x
1
x
2
f
(
x
1
)
f
(
x
2
)
∣
=
f
(
ξ
)
−
ξ
f
′
(
ξ
)
\frac{1}{x_1-x_2}\begin{vmatrix}x_1&x_2\\f(x_1)&f(x_2)\end{vmatrix}=f(\xi)-\xi f^{\prime}(\xi)
x1−x21∣∣∣∣x1f(x1)x2f(x2)∣∣∣∣=f(ξ)−ξf′(ξ)
证明
要证原等式成立,只要证
x
1
f
(
x
2
)
−
x
2
f
(
x
1
)
x
1
−
x
2
=
f
(
ξ
)
−
ξ
f
′
(
ξ
)
\frac{x_1f(x_2)-x_2f(x_1)}{x_1-x_2}=f(\xi)-\xi f^{\prime}(\xi)
x1−x2x1f(x2)−x2f(x1)=f(ξ)−ξf′(ξ)成立,由
x
1
x
2
>
0
x_1x_2>0
x1x2>0,知
x
1
≠
0
,
x
2
≠
0
x_1\neq 0,x_2\neq0
x1=0,x2=0,只要证
f
(
x
2
)
x
2
−
f
(
x
1
)
x
1
1
x
2
−
1
x
1
=
f
(
ξ
)
−
ξ
f
′
(
ξ
)
\frac{\frac{f(x_2)}{x_2}-\frac{f(x_1)}{x_1}}{\frac{1}{x_2}-\frac{1}{x_1}}=f(\xi)-\xi f^{\prime}(\xi)
x21−x11x2f(x2)−x1f(x1)=f(ξ)−ξf′(ξ)
成立。设
F
(
x
)
=
f
(
x
)
x
F(x)=\frac{f(x)}{x}
F(x)=xf(x),
G
(
x
)
=
1
x
G(x)=\frac{1}{x}
G(x)=x1,
F
′
(
x
)
=
f
′
(
x
)
x
−
f
(
x
)
x
2
F^{\prime}(x)=\frac{f^{\prime}(x)x-f(x)}{x^2}
F′(x)=x2f′(x)x−f(x),
G
′
(
x
)
=
−
1
x
2
G^{\prime}(x)=-\frac{1}{x^2}
G′(x)=−x21,由
x
1
x
2
>
0
x_1x_2>0
x1x2>0,知
x
1
,
x
2
x_1,x_2
x1,x2同号,知
0
∉
[
x
1
,
x
2
]
0\not\in[x_1,x_2]
0∈[x1,x2],故
F
(
x
)
,
G
(
x
)
F(x),G(x)
F(x),G(x)在
[
x
1
,
x
2
]
[x_1,x_2]
[x1,x2]上满足柯西定理条件,有
f
(
x
2
)
x
2
−
f
(
x
1
)
x
1
1
x
2
−
1
x
1
=
F
(
x
2
)
−
F
(
x
1
)
G
(
x
2
)
−
G
(
x
1
)
=
F
′
(
ξ
)
G
′
(
ξ
)
=
f
′
(
ξ
)
ξ
−
f
(
ξ
)
ξ
2
−
1
/
ξ
2
=
f
(
ξ
)
−
ξ
f
′
(
ξ
)
\frac{\frac{f(x_2)}{x_2}-\frac{f(x_1)}{x_1}}{\frac{1}{x_2}-\frac{1}{x_1}}=\frac{F(x_2)-F(x_1)}{G(x_2)-G(x_1)}=\frac{F^{\prime}(\xi)}{G^{\prime}(\xi)}=\frac{\frac{f^{\prime}(\xi)\xi-f(\xi)}{\xi^2}}{-1/\xi^2}=f(\xi)-\xi f^{\prime}(\xi)
x21−x11x2f(x2)−x1f(x1)=G(x2)−G(x1)F(x2)−F(x1)=G′(ξ)F′(ξ)=−1/ξ2ξ2f′(ξ)ξ−f(ξ)=f(ξ)−ξf′(ξ)
9.设函数
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]连续,在
(
a
,
b
)
(a,b)
(a,b)内可导,且
f
′
(
x
)
≠
0
f^{\prime}(x)\neq 0
f′(x)=0,证明存在
ξ
,
η
∈
(
a
,
b
)
\xi,\eta\in(a,b)
ξ,η∈(a,b),使得
f
′
(
ξ
)
f
′
(
η
)
=
e
b
−
e
a
b
−
a
e
−
η
\frac{f^{\prime}(\xi)}{f^{\prime}(\eta)}=\frac{e^b-e^a}{b-a}e^{-\eta}
f′(η)f′(ξ)=b−aeb−eae−η
证明
要证原等式成立,只要证
f
′
(
ξ
)
=
e
b
−
e
a
b
−
a
⋅
f
′
(
η
)
e
η
f^{\prime}(\xi)= \frac{e^b-e^a}{b-a} \cdot\frac{f^{\prime}(\eta)}{e^{\eta}}
f′(ξ)=b−aeb−ea⋅eηf′(η)成立,由
f
(
b
)
−
f
(
a
)
=
f
′
(
c
)
(
b
−
a
)
f(b)-f(a)=f^{\prime}(c)(b-a)
f(b)−f(a)=f′(c)(b−a),只要证
f
′
(
ξ
)
f
(
b
)
−
f
(
a
)
e
b
−
e
a
=
f
(
b
)
−
f
(
a
)
b
−
a
⋅
f
′
(
η
)
e
η
f^{\prime}(\xi)\frac{f(b)-f(a)}{e^b-e^a}=\frac{f(b)-f(a)}{b-a}\cdot\frac{f^{\prime}(\eta)}{e^{\eta}}
f′(ξ)eb−eaf(b)−f(a)=b−af(b)−f(a)⋅eηf′(η)
成立,由拉格朗日定理知存在一点
ξ
∈
(
a
,
b
)
\xi\in(a,b)
ξ∈(a,b),使
f
′
(
ξ
)
=
f
(
b
)
−
f
(
a
)
b
−
a
f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a}
f′(ξ)=b−af(b)−f(a)
再由
f
(
x
)
,
e
x
f(x),e^x
f(x),ex在
[
a
,
b
]
[a,b]
[a,b]上满足柯西定理的条件,知存在一点
η
∈
(
a
,
b
)
\eta\in(a,b)
η∈(a,b),使
f
(
b
)
−
f
(
a
)
e
b
−
e
a
=
f
′
(
η
)
e
η
\frac{f(b)-f(a)}{e^b-e^a}=\frac{f^{\prime}(\eta)}{e^{\eta}}
eb−eaf(b)−f(a)=eηf′(η)
两式相乘,原式得证
10.设
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上连续,在
(
a
,
b
)
(a,b)
(a,b)内可导,且
f
(
a
)
=
f
(
b
)
=
1
f(a)=f(b)=1
f(a)=f(b)=1,试证:存在
ξ
,
η
∈
(
a
,
b
)
\xi,\eta\in(a,b)
ξ,η∈(a,b),使得
e
η
−
ξ
[
f
(
η
)
+
f
′
(
η
)
]
=
1
e^{\eta-\xi}[f(\eta)+f^{\prime}(\eta)]=1
eη−ξ[f(η)+f′(η)]=1
证明
要证原等式成立,只要证
e
η
[
f
(
η
)
+
f
′
(
η
)
]
=
e
ξ
e^{\eta}[f(\eta)+f^{\prime}(\eta)]=e^{\xi}
eη[f(η)+f′(η)]=eξ
成立,由
F
(
x
)
=
e
x
f
(
x
)
F(x)=e^xf(x)
F(x)=exf(x)在
[
a
,
b
]
[a,b]
[a,b]上满足拉格朗日定理条件,有
e
b
f
(
b
)
−
e
a
f
(
a
)
b
−
a
=
F
′
(
η
)
=
e
η
[
f
(
η
)
+
f
′
(
η
)
]
\frac{e^bf(b)-e^af(a)}{b-a}=F^{\prime}(\eta)=e^{\eta}[f(\eta)+f^{\prime}(\eta)]
b−aebf(b)−eaf(a)=F′(η)=eη[f(η)+f′(η)],
a
<
η
<
b
a<\eta<b
a<η<b,又应用拉格朗日定理知
e
b
f
(
b
)
−
e
a
f
(
a
)
b
−
a
=
e
b
−
a
a
b
−
a
=
e
ξ
\frac{e^bf(b)-e^af(a)}{b-a}=\frac{e^b-a^a}{b-a}=e^{\xi}
b−aebf(b)−eaf(a)=b−aeb−aa=eξ,
a
<
ξ
<
b
a<\xi<b
a<ξ<b。原式成立。
11.设函数
f
(
x
)
f(x)
f(x)在
[
0
,
1
]
[0,1]
[0,1]上连续,在
(
0
,
1
)
(0,1)
(0,1)内可导,且
f
(
0
)
=
f
(
1
)
=
0
f(0)=f(1)=0
f(0)=f(1)=0,
f
(
1
2
)
=
1
f\left(\frac{1}{2}\right)=1
f(21)=1,试证:
(
1
)
(1)
(1)存在
η
∈
(
1
2
,
1
)
\eta\in\left(\frac{1}{2},1\right)
η∈(21,1),使
f
(
η
)
=
η
f(\eta)=\eta
f(η)=η;
(
2
)
(2)
(2)对任意实数
ξ
\xi
ξ,存在
ξ
∈
(
0
,
η
)
\xi\in(0,\eta)
ξ∈(0,η),使得
f
′
(
ξ
)
−
λ
[
f
(
ξ
)
−
ξ
]
=
1
f^{\prime}(\xi)-\lambda[f(\xi)-\xi]=1
f′(ξ)−λ[f(ξ)−ξ]=1。
证明
(
1
)
(1)
(1)设
φ
(
x
)
=
f
(
x
)
−
x
\varphi(x)=f(x)-x
φ(x)=f(x)−x,
φ
(
x
)
\varphi(x)
φ(x)在
[
1
2
,
1
]
\left[\frac{1}{2},1\right]
[21,1]上连续,
φ
(
1
)
=
f
(
1
)
−
1
=
−
1
<
0
,
φ
(
1
2
)
=
f
(
1
2
)
−
1
2
=
1
−
1
2
=
1
2
>
0
\varphi(1)=f(1)-1=-1<0,\varphi\left(\frac{1}{2}\right)=f\left(\frac{1}{2}\right)-\frac{1}{2}=1-\frac{1}{2}=\frac{1}{2}>0
φ(1)=f(1)−1=−1<0,φ(21)=f(21)−21=1−21=21>0
由根的存在定理知,至少存在一点
η
∈
(
1
2
,
1
)
\eta\in\left(\frac{1}{2},1\right)
η∈(21,1),使
φ
(
η
)
=
0
\varphi(\eta)=0
φ(η)=0。
(
2
)
(2)
(2)要证
f
′
(
ξ
)
−
λ
[
f
(
ξ
)
−
ξ
]
=
1
f^{\prime}(\xi)-\lambda[f(\xi)-\xi]=1
f′(ξ)−λ[f(ξ)−ξ]=1成立,只要证
f
′
(
ξ
)
−
1
−
λ
[
f
(
ξ
)
−
ξ
]
=
0
f^{\prime}(\xi)-1-\lambda[f(\xi)-\xi]=0
f′(ξ)−1−λ[f(ξ)−ξ]=0成立,由
φ
(
ξ
)
=
f
(
ξ
)
−
ξ
\varphi(\xi)=f(\xi)-\xi
φ(ξ)=f(ξ)−ξ,
φ
′
(
x
)
=
f
′
(
x
)
−
1
\varphi^{\prime}(x)=f^{\prime}(x)-1
φ′(x)=f′(x)−1,
φ
′
(
ξ
)
=
f
′
(
ξ
)
−
1
\varphi^{\prime}(\xi)=f^{\prime}(\xi)-1
φ′(ξ)=f′(ξ)−1,只要证
φ
′
(
ξ
)
−
λ
φ
(
ξ
)
=
0
\varphi^{\prime}(\xi)-\lambda\varphi(\xi)=0
φ′(ξ)−λφ(ξ)=0成立,只要证
[
φ
′
(
ξ
)
−
λ
φ
(
ξ
)
]
e
−
λ
ξ
=
0
[\varphi^{\prime}(\xi)-\lambda\varphi(\xi)]e^{-\lambda\xi}=0
[φ′(ξ)−λφ(ξ)]e−λξ=0成立,只要证
{
[
φ
′
(
x
)
−
λ
φ
(
x
)
]
e
−
λ
x
}
∣
x
=
ξ
=
0
\left.\left\{[\varphi^{\prime}(x)-\lambda \varphi(x)]e^{-\lambda x}\right\}\right|_{x=\xi}=0
{[φ′(x)−λφ(x)]e−λx}∣∣x=ξ=0成立,只要证
[
φ
(
x
)
e
−
λ
x
]
′
∣
x
=
ξ
=
0
\left.\left[\varphi(x)e^{-\lambda x}\right]^{\prime}\right|_{x=\xi}=0
[φ(x)e−λx]′∣∣∣x=ξ=0成立,设
F
(
x
)
=
φ
(
x
)
e
−
λ
x
F(x)= \varphi(x)e^{-\lambda x}
F(x)=φ(x)e−λx,则只要证
F ′ ( ξ ) = 0 F^{\prime}(\xi)=0 F′(ξ)=0
成立, F ( x ) F(x) F(x)在 [ 0 , η ] [0,\eta] [0,η]连续,在 ( 0 , η ) (0,\eta) (0,η)内可导, F ( 0 ) = 0 = F ( η ) F(0)=0=F(\eta) F(0)=0=F(η),由罗尔定理知,至少存在一点 ξ ∈ ( 0 , η ) \xi\in(0,\eta) ξ∈(0,η),使 F ′ ( ξ ) = 0 F^{\prime}(\xi)=0 F′(ξ)=0,原式得证。
12.设
f
(
x
)
f(x)
f(x)二阶可导,且在
(
0
,
a
)
(0,a)
(0,a)内某点取到最大之外,对一切
x
∈
[
0
,
a
]
x\in[0,a]
x∈[0,a],都有
∣
f
′
′
(
x
)
∣
≤
m
(
m
为
常
数
)
\left|f^{\prime\prime}(x)\right|\leq m(m 为常数)
∣f′′(x)∣≤m(m为常数),证明:
∣
f
′
(
0
)
∣
+
∣
f
′
(
a
)
∣
≤
a
m
\left|f^{\prime}(0)\right|+\left|f^{\prime}(a)\right|\leq am
∣f′(0)∣+∣f′(a)∣≤am。
证明
由
f
(
x
)
f(x)
f(x)在
x
0
x_0
x0处取到最大值,且
x
0
∈
(
0
,
a
)
x_0\in(0,a)
x0∈(0,a),知
f
(
x
0
)
f(x_0)
f(x0)为极大值又
f
′
(
x
0
)
f^{\prime}(x_0)
f′(x0)存在,由费马定理知
f
′
(
x
0
)
=
0
f^{\prime}(x_0)=0
f′(x0)=0,于是
∣
f
′
(
0
)
∣
+
∣
f
′
(
a
)
∣
=
∣
f
′
(
x
0
)
−
f
′
(
0
)
∣
+
∣
f
′
(
a
)
−
f
′
(
x
0
)
∣
=
∣
f
′
′
(
ξ
1
)
x
0
∣
+
∣
f
′
′
(
ξ
2
)
(
a
−
x
0
)
∣
≤
m
x
0
+
m
(
a
−
x
0
)
=
m
a
\begin{aligned} \left|f^{\prime}(0)\right|+\left|f^{\prime}(a)\right|&=\left|f^{\prime}(x_0)-f^{\prime}(0)\right|+ \left|f^{\prime}(a)-f^{\prime}(x_0)\right|\\&= \left|f^{\prime\prime}(\xi_1)x_0\right|+ \left|f^{\prime\prime}(\xi_2)(a-x_0)\right|\leq mx_0+m(a-x_0)=ma \end{aligned}
∣f′(0)∣+∣f′(a)∣=∣f′(x0)−f′(0)∣+∣f′(a)−f′(x0)∣=∣f′′(ξ1)x0∣+∣f′′(ξ2)(a−x0)∣≤mx0+m(a−x0)=ma
13.设
f
(
x
)
f(x)
f(x)在
[
0
,
1
]
[0,1]
[0,1]上连续,在
(
0
,
1
)
(0,1)
(0,1)内可导,且
∣
f
′
(
x
)
∣
<
1
|f^{\prime}(x)|<1
∣f′(x)∣<1,又
f
(
0
)
=
f
(
1
)
f(0)=f(1)
f(0)=f(1),证明:对任意
x
1
,
x
2
∈
[
0
,
1
]
x_1,x_2\in[0,1]
x1,x2∈[0,1],有
∣
f
(
x
1
)
−
f
(
x
2
)
∣
<
1
2
|f(x_1)-f(x_2)|<\frac{1}{2}
∣f(x1)−f(x2)∣<21。
证明
不妨设
0
≤
x
1
≤
x
2
≤
1
0\leq x_1\leq x_2 \leq 1
0≤x1≤x2≤1,当
x
2
−
x
1
≤
1
2
x_2 -x_1\leq \frac{1}{2}
x2−x1≤21时。由拉格朗日定理知
∣
f
(
x
1
)
−
f
(
x
2
)
∣
=
∣
f
′
(
ξ
1
)
(
x
1
−
x
2
)
∣
<
1
2
|f(x_1)-f(x_2)|=|f^{\prime}(\xi_1)(x_1-x_2)|<\frac{1}{2}
∣f(x1)−f(x2)∣=∣f′(ξ1)(x1−x2)∣<21;当
x
2
−
x
1
>
1
2
x_2-x_1>\frac{1}{2}
x2−x1>21时,则
0
≤
x
1
+
(
1
−
x
2
)
=
1
−
(
x
2
−
x
1
)
<
1
2
0\leq x_1+(1-x_2)=1-(x_2-x_1)<\frac{1}{2}
0≤x1+(1−x2)=1−(x2−x1)<21;又
f
(
0
)
=
f
(
1
)
f(0)=f(1)
f(0)=f(1),于是
∣
f
(
x
1
)
−
f
(
x
2
)
∣
=
∣
f
(
x
1
)
−
f
(
0
)
−
(
f
(
x
2
)
−
f
(
1
)
)
∣
≤
∣
f
(
x
1
)
−
f
(
0
)
∣
+
∣
f
(
1
)
−
f
(
x
2
)
∣
=
∣
f
′
(
ξ
)
∣
x
1
+
∣
f
′
(
ξ
2
)
∣
∣
1
−
x
2
∣
<
x
1
+
(
1
−
x
2
)
<
1
2
\begin{aligned} \left|f(x_1)-f(x_2)\right|&=|f(x_1)-f(0)-(f(x_2)-f(1))|\leq |f(x_1)-f(0)|+|f(1)-f(x_2)|\\&=|f^{\prime}(\xi)|x_1+|f^{\prime}(\xi_2)||1-x_2|<x_1+(1-x_2)<\frac{1}{2} \end{aligned}
∣f(x1)−f(x2)∣=∣f(x1)−f(0)−(f(x2)−f(1))∣≤∣f(x1)−f(0)∣+∣f(1)−f(x2)∣=∣f′(ξ)∣x1+∣f′(ξ2)∣∣1−x2∣<x1+(1−x2)<21
故 x 1 , x 2 ∈ [ 0 , 1 ] x_1,x_2\in[0,1] x1,x2∈[0,1],则 ∣ f ( x 1 ) − f ( x 2 ) ∣ < 1 2 |f(x_1)-f(x_2)|<\frac{1}{2} ∣f(x1)−f(x2)∣<21。
14.设
f
(
x
)
f(x)
f(x)在闭区间
[
a
,
b
]
[a,b]
[a,b]上连续,在
(
a
,
b
)
(a,b)
(a,b)内可导,且
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上不是线性函数,则至少存在一点
ξ
∈
(
a
,
b
)
\xi\in(a,b)
ξ∈(a,b),使
∣
f
′
(
ξ
)
∣
>
∣
f
(
b
)
−
f
(
a
)
b
−
a
∣
\left|f^{\prime}(\xi)\right|>\left|\frac{f(b)-f(a)}{b-a}\right|
∣f′(ξ)∣>∣∣∣b−af(b)−f(a)∣∣∣。
证明
由题意知
f
(
x
)
f(x)
f(x)在区间
[
a
,
b
]
[a,b]
[a,b]上不是线性函数,即不是直线,设
F
(
x
)
=
f
(
x
)
−
f
(
a
)
−
f
(
b
)
−
f
(
a
)
b
−
a
(
x
−
a
)
F(x)=f(x)-f(a)-\frac{f(b)-f(a)}{b-a} (x-a)
F(x)=f(x)−f(a)−b−af(b)−f(a)(x−a)
已知
F
(
a
)
=
F
(
b
)
=
0
F(a)=F(b)=0
F(a)=F(b)=0,且当
a
<
x
<
b
a<x<b
a<x<b时,
f
(
x
)
≢
0
f(x)\not\equiv0
f(x)≡0(否则
f
(
x
)
≡
0
f(x)\equiv0
f(x)≡0,与
F
(
x
)
=
f
(
a
)
+
f
(
b
)
−
f
(
a
)
b
−
a
(
x
−
a
)
F(x)=f(a)+\frac{f(b)-f(a)}{b-a}(x-a)
F(x)=f(a)+b−af(b)−f(a)(x−a)是线性函数矛盾),存在
c
∈
(
a
,
b
)
c\in(a,b)
c∈(a,b),使
F
(
c
)
≠
0
F(c)\neq 0
F(c)=0,不妨设
F
(
c
)
>
0
F(c)>0
F(c)>0,在区间
[
a
,
c
]
[a,c]
[a,c]与
[
c
,
b
]
[c,b]
[c,b]上分别应用拉格朗日定理,存在
ξ
1
∈
(
a
,
c
)
\xi_1\in(a,c)
ξ1∈(a,c),使
F
′
(
ξ
1
)
=
F
(
c
)
−
F
(
a
)
c
−
a
=
F
(
c
)
c
−
a
>
0
F^{\prime}(\xi_1)=\frac{F(c)-F(a)}{c-a}=\frac{F(c)}{c-a}>0
F′(ξ1)=c−aF(c)−F(a)=c−aF(c)>0;
ξ
2
∈
(
c
,
b
)
\xi_2\in(c,b)
ξ2∈(c,b),使
F
′
(
ξ
2
)
=
F
(
b
)
−
F
(
c
)
b
−
c
=
−
F
(
c
)
b
−
c
<
0
F^{\prime}(\xi_2)=\frac{F(b)-F(c)}{b-c}=-\frac{F(c)}{b-c}<0
F′(ξ2)=b−cF(b)−F(c)=−b−cF(c)<0。因而
f
′
(
ξ
1
)
>
f
(
b
)
−
f
(
a
)
b
−
a
f^{\prime}(\xi_1)>\frac{f(b)-f(a)}{b-a}
f′(ξ1)>b−af(b)−f(a)
f
′
(
ξ
2
)
<
f
(
b
)
−
f
(
a
)
b
−
a
f^{\prime}(\xi_2)<\frac{f(b)-f(a)}{b-a}
f′(ξ2)<b−af(b)−f(a)
因此,当
f
(
b
)
−
f
(
a
)
b
−
a
≥
0
\frac{f(b)-f(a)}{b-a}\geq0
b−af(b)−f(a)≥0时,
∣
f
′
(
ξ
1
)
∣
>
∣
f
(
b
)
−
f
(
a
)
b
−
a
∣
|f^{\prime}(\xi_1)|>\left|\frac{f(b)-f(a)}{b-a}\right|
∣f′(ξ1)∣>∣∣∣b−af(b)−f(a)∣∣∣;
当
f
(
b
)
−
f
(
a
)
b
−
a
<
0
\frac{f(b)-f(a)}{b-a}<0
b−af(b)−f(a)<0时,
∣
f
′
(
ξ
2
)
∣
>
∣
f
(
b
)
−
f
(
a
)
b
−
a
∣
|f^{\prime}(\xi_2)|>\left|\frac{f(b)-f(a)}{b-a}\right|
∣f′(ξ2)∣>∣∣∣b−af(b)−f(a)∣∣∣。得证
15.设
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上二阶可导,
f
′
(
a
)
=
f
′
(
b
)
=
0
f^{\prime}(a)=f^{\prime}(b)=0
f′(a)=f′(b)=0,证明:至少存在一点
ξ
∈
(
a
,
b
)
\xi\in(a,b)
ξ∈(a,b),使
∣
f
′
′
(
ξ
)
∣
≥
4
∣
f
(
b
)
−
f
(
a
)
(
b
−
a
)
2
∣
|f^{\prime\prime}(\xi)|\geq4\left|\frac{f(b)-f(a)}{(b-a)^2}\right|
∣f′′(ξ)∣≥4∣∣∣∣(b−a)2f(b)−f(a)∣∣∣∣
证明
f
(
x
)
f(x)
f(x)在
x
=
a
,
x
=
b
x=a,x=b
x=a,x=b处分别展成泰勒公式,得
f
(
x
)
=
f
(
a
)
+
f
′
(
a
)
(
x
−
a
)
+
f
′
′
(
ξ
1
)
2
!
(
x
−
a
)
2
,
a
<
ξ
1
<
x
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime\prime}(\xi_1)}{2!}(x-a)^2,a<\xi_1<x
f(x)=f(a)+f′(a)(x−a)+2!f′′(ξ1)(x−a)2,a<ξ1<x
将
x
=
a
+
b
2
x=\frac{a+b}{2}
x=2a+b代入上式,得
f
(
a
+
b
2
)
=
f
(
a
)
+
f
′
(
ξ
1
)
2
!
(
x
−
a
)
2
,
a
<
ξ
1
<
a
+
b
2
f\left(\frac{a+b}{2}\right)=f(a)+\frac{f^{\prime}(\xi_1)}{2!}(x-a)^2,a<\xi_1<\frac{a+b}{2}
f(2a+b)=f(a)+2!f′(ξ1)(x−a)2,a<ξ1<2a+b
f
(
x
)
=
f
(
b
)
+
f
′
(
b
)
(
x
−
b
)
+
f
′
′
(
ξ
2
)
2
!
(
x
−
b
)
2
,
x
<
ξ
2
<
b
f(x)=f(b)+f^{\prime}(b)(x-b)+\frac{f^{\prime\prime}(\xi_2)}{2!}(x-b)^2,x<\xi_2<b
f(x)=f(b)+f′(b)(x−b)+2!f′′(ξ2)(x−b)2,x<ξ2<b
将
x
=
a
+
b
2
x=\frac{a+b}{2}
x=2a+b代入上式,得
f
(
a
+
b
2
)
=
f
(
b
)
+
f
′
′
(
ξ
2
)
2
!
(
b
−
a
2
)
2
,
a
+
b
2
<
ξ
2
<
b
f\left(\frac{a+b}{2}\right)=f(b)+\frac{f^{\prime\prime}(\xi_2)}{2!}\left(\frac{b-a}{2}\right)^2,\frac{a+b}{2}<\xi_2<b
f(2a+b)=f(b)+2!f′′(ξ2)(2b−a)2,2a+b<ξ2<b
得
0
=
f
(
b
)
−
f
(
a
)
+
(
b
−
a
)
2
8
[
f
′
′
(
ξ
2
)
−
f
′
′
(
ξ
1
)
]
0=f(b)-f(a)+\frac{(b-a)^2}{8}\left[f^{\prime\prime}(\xi_2)-f^{\prime\prime}(\xi_1)\right]
0=f(b)−f(a)+8(b−a)2[f′′(ξ2)−f′′(ξ1)]
则有
∣
f
(
b
)
−
f
(
a
)
∣
=
(
b
−
a
)
2
8
∣
f
′
′
(
ξ
2
)
−
f
′
′
(
ξ
1
)
∣
≤
(
b
−
a
)
2
8
(
∣
f
′
′
(
ξ
2
)
∣
+
∣
f
′
′
(
ξ
1
)
∣
)
\left|f(b)-f(a)\right|=\frac{(b-a)^2}{8}\left|f^{\prime\prime}(\xi_2)-f^{\prime\prime}(\xi_1)\right|\leq\frac{(b-a)^2}{8}(|f^{\prime\prime}(\xi_2)|+|f^{\prime\prime}(\xi_1)|)
∣f(b)−f(a)∣=8(b−a)2∣f′′(ξ2)−f′′(ξ1)∣≤8(b−a)2(∣f′′(ξ2)∣+∣f′′(ξ1)∣)。
设
∣
f
′
′
(
ξ
)
∣
=
max
{
∣
f
′
′
(
ξ
1
)
∣
,
∣
f
′
′
(
ξ
2
)
∣
}
|f^{\prime\prime}(\xi)|=\max\left\{|f^{\prime\prime}(\xi_1)|,|f^{\prime\prime}(\xi_2)|\right\}
∣f′′(ξ)∣=max{∣f′′(ξ1)∣,∣f′′(ξ2)∣},有
∣
f
(
b
)
−
f
(
a
)
∣
≤
(
b
−
a
)
2
8
⋅
2
∣
f
′
′
(
ξ
)
∣
|f(b)-f(a)|\leq\frac{(b-a)^2}{8}\cdot 2|f^{\prime\prime}(\xi)|
∣f(b)−f(a)∣≤8(b−a)2⋅2∣f′′(ξ)∣,即
∣
f
′
′
(
ξ
)
≥
4
f
(
b
)
−
f
(
a
)
(
b
−
a
)
2
∣
\left|f^{\prime\prime}(\xi)\geq4\frac{f(b)-f(a)}{(b-a)^2}\right|
∣∣∣f′′(ξ)≥4(b−a)2f(b)−f(a)∣∣∣。
16.设
a
<
b
<
c
a<b<c
a<b<c,函数
f
(
x
)
f(x)
f(x)在
[
a
,
c
]
[a,c]
[a,c]上具有二阶导数,试证:存在一点
ξ
∈
(
a
,
c
)
\xi\in(a,c)
ξ∈(a,c),使得
f
(
a
)
(
a
−
b
)
(
a
−
c
)
+
f
(
b
)
(
b
−
a
)
(
b
−
c
)
+
f
(
c
)
(
c
−
a
)
(
c
−
b
)
=
1
2
f
′
′
(
ξ
)
\frac{f(a)}{(a-b)(a-c)}+\frac{f(b)}{(b-a)(b-c)}+\frac{f(c)}{(c-a)(c-b)}=\frac{1}{2}f^{\prime\prime}(\xi)
(a−b)(a−c)f(a)+(b−a)(b−c)f(b)+(c−a)(c−b)f(c)=21f′′(ξ)。
令
F
(
x
)
=
(
x
−
b
)
(
x
−
c
)
f
(
a
)
(
a
−
b
)
(
a
−
c
)
+
(
x
−
a
)
(
x
−
c
)
f
(
b
)
(
b
−
a
)
(
b
−
c
)
+
(
x
−
a
)
(
x
−
b
)
f
(
c
)
(
c
−
a
)
(
c
−
b
)
−
f
(
x
)
F(x)=\frac{(x-b)(x-c)f(a)}{(a-b)(a-c)}+\frac{(x-a)(x-c)f(b)}{(b-a)(b-c)}+\frac{(x-a)(x-b)f(c)}{(c-a)(c-b)}-f(x)
F(x)=(a−b)(a−c)(x−b)(x−c)f(a)+(b−a)(b−c)(x−a)(x−c)f(b)+(c−a)(c−b)(x−a)(x−b)f(c)−f(x),由题设
F
(
x
)
F(x)
F(x)在
[
a
,
c
]
[a,c]
[a,c]上二阶可导,且有
F
(
a
)
=
F
(
b
)
=
F
(
c
)
=
0
F(a)=F(b)=F(c)=0
F(a)=F(b)=F(c)=0,对
F
(
x
)
F(x)
F(x)在
[
a
,
b
]
,
[
b
,
c
]
[a,b],[b,c]
[a,b],[b,c]分别应用罗尔定理,必存在
ξ
1
∈
(
a
,
b
)
,
ξ
2
∈
(
b
,
c
)
\xi_1\in(a,b),\xi_2\in(b,c)
ξ1∈(a,b),ξ2∈(b,c),使得
F
′
(
ξ
1
)
=
0
,
F
′
(
ξ
2
)
=
0
F^{\prime}(\xi_1)=0,F^{\prime}(\xi_2)=0
F′(ξ1)=0,F′(ξ2)=0
又由于
F
′
(
x
)
F^{\prime}(x)
F′(x)在
[
ξ
1
,
ξ
2
]
[\xi_1,\xi_2]
[ξ1,ξ2]上可导,再应用罗尔定理,必存在
ξ
=
(
ξ
1
,
ξ
2
)
⊂
(
a
,
c
)
\xi=(\xi_1,\xi_2)\subset(a,c)
ξ=(ξ1,ξ2)⊂(a,c),使得
F
′
′
(
ξ
)
=
0
F^{\prime\prime}(\xi)=0
F′′(ξ)=0,而
F
′
′
(
x
)
=
2
f
(
a
)
(
a
−
b
)
(
a
−
c
)
+
2
f
(
b
)
(
b
−
a
)
(
b
−
c
)
+
2
f
(
c
)
(
c
−
a
)
(
c
−
b
)
−
f
′
′
(
ξ
)
F^{\prime\prime}(x)= \frac{2f(a)}{(a-b)(a-c)}+\frac{2f(b)}{(b-a)(b-c)}+\frac{2f(c)}{(c-a)(c-b)}-f^{\prime\prime}(\xi)
F′′(x)=(a−b)(a−c)2f(a)+(b−a)(b−c)2f(b)+(c−a)(c−b)2f(c)−f′′(ξ)
以
ξ
\xi
ξ代
x
x
x,即得所证结论。
17.设函数
f
(
x
)
f(x)
f(x)在
[
1
,
3
]
[1,3]
[1,3]上二阶导数连续,试证:至少存在一点
ξ
∈
(
1
,
3
)
\xi\in(1,3)
ξ∈(1,3),使
f
′
′
(
ξ
)
=
f
(
1
)
−
2
f
(
2
)
+
f
(
3
)
f^{\prime\prime}(\xi)=f(1)-2f(2)+f(3)
f′′(ξ)=f(1)−2f(2)+f(3)。
证明
将
f
(
x
)
f(x)
f(x)在
x
=
2
x=2
x=2处展成泰勒公式,得
f
(
x
)
=
f
(
2
)
+
f
′
(
2
)
(
x
−
2
)
+
f
′
′
(
ξ
)
2
!
(
x
−
2
)
2
f(x)=f(2)+f^{\prime}(2)(x-2)+\frac{f^{\prime\prime}(\xi)}{2!}(x-2)^2
f(x)=f(2)+f′(2)(x−2)+2!f′′(ξ)(x−2)2
f ( 1 ) = f ( 2 ) + f ′ ( 2 ) ( − 1 ) + f ′ ′ ( ξ 1 ) 2 ! ( − 1 ) 2 , 1 < ξ 1 < 2 f(1)=f(2)+f^{\prime}(2)(-1)+ \frac{f^{\prime\prime}(\xi_1)}{2!}(-1)^2,1<\xi_1<2 f(1)=f(2)+f′(2)(−1)+2!f′′(ξ1)(−1)2,1<ξ1<2
f
(
3
)
=
f
(
2
)
+
f
′
(
2
)
+
f
′
′
(
ξ
2
)
2
!
,
2
<
ξ
2
<
3
f(3)=f(2)+f^{\prime}(2)+\frac{f^{\prime\prime}(\xi_2)}{2!},2<\xi_2<3
f(3)=f(2)+f′(2)+2!f′′(ξ2),2<ξ2<3
f
(
1
)
+
f
(
3
)
=
2
f
(
2
)
+
1
2
[
f
′
′
(
ξ
1
)
+
f
′
′
(
ξ
2
)
]
f(1)+f(3)=2f(2)+\frac{1}{2}\left[f^{\prime\prime}(\xi_1)+f^{\prime\prime}(\xi_2)\right]
f(1)+f(3)=2f(2)+21[f′′(ξ1)+f′′(ξ2)],由介值定理,
∃
ξ
∈
(
ξ
1
,
ξ
2
)
⊂
(
1
,
3
)
\exists\,\xi\in(\xi_1,\xi_2)\subset(1,3)
∃ξ∈(ξ1,ξ2)⊂(1,3),使
f
′
′
(
ξ
)
=
1
2
[
f
′
′
(
ξ
1
)
+
f
′
′
(
ξ
2
)
]
f^{\prime\prime}(\xi)=\frac{1}{2}\left[f^{\prime\prime}(\xi_1)+f^{\prime\prime}(\xi_2)\right]
f′′(ξ)=21[f′′(ξ1)+f′′(ξ2)],有
f
′
′
(
ξ
)
=
f
(
1
)
+
f
(
3
)
−
2
f
(
2
)
f^{\prime\prime}(\xi)=f(1)+f(3)-2f(2)
f′′(ξ)=f(1)+f(3)−2f(2)。
18.设函数
f
(
x
)
,
g
(
x
)
f(x),g(x)
f(x),g(x)在
[
a
,
b
]
[a,b]
[a,b]上连续,在
(
a
,
b
)
(a,b)
(a,b)内具有二阶导数且存在相等的最大值,
f
(
a
)
=
g
(
a
)
f(a)=g(a)
f(a)=g(a),
f
(
b
)
=
g
(
b
)
f(b)=g(b)
f(b)=g(b)。证明:存在
ξ
∈
(
a
,
b
)
\xi\in(a,b)
ξ∈(a,b),使得
f
′
′
(
ξ
)
=
g
′
′
(
ξ
)
f^{\prime\prime}(\xi)=g^{\prime\prime}(\xi)
f′′(ξ)=g′′(ξ)。
证明
设
φ
(
x
)
=
f
(
x
)
−
g
(
x
)
\varphi(x)=f(x)-g(x)
φ(x)=f(x)−g(x),由题设
f
(
x
)
,
g
(
x
)
f(x),g(x)
f(x),g(x)存在相等的最大值,设
x
1
∈
(
a
,
b
)
,
x
2
∈
(
a
,
b
)
x_1\in(a,b),x_2\in(a,b)
x1∈(a,b),x2∈(a,b)使
f
(
x
1
)
=
max
[
a
,
b
]
f
(
x
)
=
g
(
x
2
)
=
max
[
a
,
b
]
g
(
x
)
f(x_1)=\max\limits_{[a,b]}f(x)=g(x_2)=\max\limits_{[a,b]}g(x)
f(x1)=[a,b]maxf(x)=g(x2)=[a,b]maxg(x)。
若
x
1
=
x
2
x_1=x_2
x1=x2,即
f
(
x
)
f(x)
f(x)与
g
(
x
)
g(x)
g(x)在同一点取得最大值,此时,取
η
=
x
1
\eta=x_1
η=x1,有
f
(
η
)
=
g
(
η
)
f(\eta)=g(\eta)
f(η)=g(η);
若
x
1
≠
x
2
x_1\neq x_2
x1=x2,不妨设
x
1
<
x
2
x_1<x_2
x1<x2,则
φ
(
x
1
)
=
f
(
x
1
)
−
g
(
x
1
)
>
0
\varphi(x_1)=f(x_1)-g(x_1)>0
φ(x1)=f(x1)−g(x1)>0,
φ
(
x
2
)
<
f
(
x
2
)
−
g
(
x
2
)
<
0
\varphi(x_2)<f(x_2)-g(x_2)<0
φ(x2)<f(x2)−g(x2)<0,且
φ
(
x
)
\varphi(x)
φ(x)在
[
a
,
b
]
[a,b]
[a,b]上连续,则由零点定理得存在
η
∈
(
a
,
b
)
\eta\in(a,b)
η∈(a,b),使得
φ
(
η
)
=
0
\varphi(\eta)=0
φ(η)=0,即
f
(
η
)
=
g
(
η
)
f(\eta)=g(\eta)
f(η)=g(η)。
由题设
f
(
a
)
=
g
(
a
)
f(a)=g(a)
f(a)=g(a),
f
(
b
)
=
g
(
b
)
f(b)=g(b)
f(b)=g(b),则
φ
(
a
)
=
0
=
φ
(
b
)
\varphi(a)=0=\varphi(b)
φ(a)=0=φ(b),结合
φ
(
η
)
=
0
\varphi(\eta)=0
φ(η)=0,且
φ
(
x
)
\varphi(x)
φ(x)在
[
a
,
b
]
[a,b]
[a,b]上连续,在
(
a
,
b
)
(a,b)
(a,b)内二阶可导,应用两次罗尔定理知:
存在
ξ
1
∈
(
a
,
η
)
,
ξ
2
∈
(
η
,
b
)
\xi_1\in(a,\eta),\xi_2\in(\eta,b)
ξ1∈(a,η),ξ2∈(η,b),使得
φ
′
(
ξ
1
)
=
0
\varphi^{\prime}(\xi_1)=0
φ′(ξ1)=0,
φ
′
(
ξ
2
)
=
0
\varphi^{\prime}(\xi_2)=0
φ′(ξ2)=0。
在
[
ξ
1
,
ξ
2
]
[\xi_1,\xi_2]
[ξ1,ξ2]再用罗尔定理,则存在
ξ
∈
(
ξ
1
,
ξ
2
)
\xi\in(\xi_1,\xi_2)
ξ∈(ξ1,ξ2),使
φ
′
′
(
ξ
)
=
0
\varphi^{\prime\prime}(\xi)=0
φ′′(ξ)=0。即
f
′
′
(
ξ
)
=
g
′
′
(
ξ
)
f^{\prime\prime}(\xi)=g^{\prime\prime}(\xi)
f′′(ξ)=g′′(ξ)。
数学强化通关330题(数学一)西安交通大学出版社
19.设
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上有二阶连续导数,且
f
(
a
)
=
f
(
b
)
=
0
f(a)=f(b)=0
f(a)=f(b)=0,
M
=
max
[
a
,
b
]
∣
f
′
′
(
x
)
∣
M=\max\limits_{[a,b]}\left|f^{\prime\prime}(x)\right|
M=[a,b]max∣f′′(x)∣。
证明:
∣
∫
a
b
f
(
x
)
d
x
∣
≤
(
b
−
a
)
3
12
M
\left|\int_{a}^{b}f(x)\,{\rm d}x\right|\leq\frac{(b-a)^3}{12}M
∣∣∣∫abf(x)dx∣∣∣≤12(b−a)3M。
证明
由泰勒公式得
f
(
a
)
=
f
(
x
)
+
f
′
(
x
)
(
a
−
x
)
+
f
′
′
(
ξ
1
)
2
!
(
a
−
x
)
2
(1)
f(a)=f(x)+f^{\prime}(x)(a-x)+\frac{f^{\prime\prime}(\xi_1)}{2!}(a-x)^2\tag{1}
f(a)=f(x)+f′(x)(a−x)+2!f′′(ξ1)(a−x)2(1)
f
(
b
)
=
f
(
x
)
+
f
′
(
x
)
(
b
−
x
)
+
f
′
′
(
ξ
2
)
2
!
(
b
−
x
)
2
(2)
f(b)=f(x)+f^{\prime}(x)(b-x)+\frac{f^{\prime\prime}(\xi_2)}{2!}(b-x)^2\tag{2}
f(b)=f(x)+f′(x)(b−x)+2!f′′(ξ2)(b−x)2(2)
(
1
)
(1)
(1)式加
(
2
)
(2)
(2)式得
0
=
2
f
(
x
)
+
f
′
(
x
)
(
a
+
b
−
2
x
)
+
f
′
′
(
ξ
1
)
2
!
(
a
−
x
)
2
+
f
′
′
(
ξ
2
)
2
!
(
b
−
x
)
2
0=2f(x)+f^{\prime}(x)(a+b-2x)+\frac{f^{\prime\prime}(\xi_1)}{2!}(a-x)^2+\frac{f^{\prime\prime}(\xi_2)}{2!}(b-x)^2
0=2f(x)+f′(x)(a+b−2x)+2!f′′(ξ1)(a−x)2+2!f′′(ξ2)(b−x)2
两端从
a
a
a到
b
b
b积分得
0
=
2
∫
a
b
f
(
x
)
d
x
+
∫
a
b
(
a
+
b
−
2
x
)
d
f
(
x
)
+
∫
a
b
[
f
′
′
(
ξ
1
)
2
!
(
a
−
x
)
2
+
f
′
′
(
ξ
2
)
2
!
(
b
−
x
)
2
]
d
x
0=2\int_{a}^{b}f(x)\,{\rm d}x+\int_{a}^{b}(a+b-2x)\,{\rm d}f(x)+\int_{a}^{b}\left[\frac{f^{\prime\prime}(\xi_1)}{2!}(a-x)^2+\frac{f^{\prime\prime}(\xi_2)}{2!}(b-x)^2\right]\,{\rm d}x
0=2∫abf(x)dx+∫ab(a+b−2x)df(x)+∫ab[2!f′′(ξ1)(a−x)2+2!f′′(ξ2)(b−x)2]dx
又
∫
a
b
(
a
+
b
−
2
x
)
d
f
(
x
)
=
(
a
+
b
−
2
x
)
f
(
x
)
∣
a
b
+
2
∫
a
b
f
(
x
)
d
x
=
2
∫
a
b
f
(
x
)
d
x
\int_{a}^{b}(a+b-2x)\,{\rm d}f(x)=\left.(a+b-2x)f(x)\right|_{a}^{b}+2\int_{a}^{b}f(x)\,{\rm d}x=2\int_{a}^{b}f(x)\,{\rm d}x
∫ab(a+b−2x)df(x)=(a+b−2x)f(x)∣ab+2∫abf(x)dx=2∫abf(x)dx
则
4
∫
a
b
f
(
x
)
d
x
=
−
∫
a
b
[
f
′
′
(
ξ
1
)
2
!
(
a
−
x
)
2
+
f
′
′
(
ξ
2
)
2
!
(
b
−
x
)
2
]
d
x
4\int_{a}^{b}f(x)\,{\rm d}x=-\int_{a}^{b} \left[\frac{f^{\prime\prime}(\xi_1)}{2!}(a-x)^2+\frac{f^{\prime\prime}(\xi_2)}{2!}(b-x)^2\right]\,{\rm d}x
4∫abf(x)dx=−∫ab[2!f′′(ξ1)(a−x)2+2!f′′(ξ2)(b−x)2]dx
4
∣
∫
a
b
f
(
x
)
d
x
∣
≤
M
2
∫
a
b
(
a
−
x
)
2
d
x
+
M
2
∫
a
b
(
b
−
x
)
2
d
x
=
M
6
(
b
−
a
)
3
+
M
6
(
b
−
a
)
3
=
M
3
(
b
−
a
)
3
\begin{aligned} 4\left| \int_{a}^{b}f(x)\,{\rm d}x\right|&\leq\frac{M}{2}\int_{a}^{b}(a-x)^2\,{\rm d}x+ \frac{M}{2}\int_{a}^{b}(b-x)^2\,{\rm d}x\\&=\frac{M}{6}(b-a)^3+ \frac{M}{6}(b-a)^3=\frac{M}{3}(b-a)^3 \end{aligned}
4∣∣∣∣∣∫abf(x)dx∣∣∣∣∣≤2M∫ab(a−x)2dx+2M∫ab(b−x)2dx=6M(b−a)3+6M(b−a)3=3M(b−a)3
∣ ∫ a b f ( x ) d x ∣ ≤ ( b − a ) 3 12 M \left|\int_{a}^{b}f(x)\,{\rm d}x\right|\leq\frac{(b-a)^3}{12}M ∣∣∣∣∣∫abf(x)dx∣∣∣∣∣≤12(b−a)3M
20.设
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上连续,在
(
a
,
b
)
(a,b)
(a,b)内可导,
f
(
a
)
=
f
(
b
)
=
0
f(a)=f(b)=0
f(a)=f(b)=0。
试证存在
ξ
∈
(
a
,
b
)
\xi\in(a,b)
ξ∈(a,b)使
f
′
(
ξ
)
+
f
2
(
ξ
)
=
0
f^{\prime}(\xi)+f^2(\xi)=0
f′(ξ)+f2(ξ)=0。
证明
令
F
(
x
)
=
f
(
x
)
e
∫
a
x
f
(
t
)
d
t
F(x)=f(x)e^{\int_{a}^{x}{f(t)}\,{\rm d}t}
F(x)=f(x)e∫axf(t)dt,由题设可知
F
(
x
)
F(x)
F(x)在
[
a
,
b
]
[a,b]
[a,b]上满足罗尔定理条件,由罗尔定理知,存在
ξ
∈
(
a
,
b
)
\xi\in(a,b)
ξ∈(a,b),使
F
′
(
ξ
)
=
0
F^{\prime}(\xi)=0
F′(ξ)=0,即
f
′
(
ξ
)
e
∫
a
ξ
f
(
t
)
d
t
+
f
2
(
ξ
)
e
∫
a
ξ
f
(
t
)
d
t
=
0
f^{\prime}(\xi)e^{\int_{a}^{\xi}{f(t)}\,{\rm d}t}+f^2(\xi) e^{\int_{a}^{\xi}{f(t)}\,{\rm d}t} =0
f′(ξ)e∫aξf(t)dt+f2(ξ)e∫aξf(t)dt=0
而
e
∫
a
ξ
f
(
t
)
d
t
≠
0
e^{\int_{a}^{\xi}{f(t)}\,{\rm d}t} \neq0
e∫aξf(t)dt=0,则
f
′
(
ξ
)
+
f
2
(
ξ
)
=
0
f^{\prime}(\xi)+f^2(\xi)=0
f′(ξ)+f2(ξ)=0
原题可证
数学分析中的典型问题与方法 高等教育出版社
21.设
f
(
x
)
f(x)
f(x)在包含
x
0
x_0
x0的区间
I
I
I上二次可微,
x
0
+
h
∈
I
x_0+h\in I
x0+h∈I,
λ
∈
(
0
,
1
)
\lambda\in(0,1)
λ∈(0,1)试证:
∃
θ
∈
(
0
,
1
)
\exists\,\theta\in(0,1)
∃θ∈(0,1),使得
f
(
x
0
+
λ
h
)
=
λ
f
(
x
0
+
h
)
+
(
1
−
λ
)
f
(
x
0
)
+
λ
2
(
λ
−
1
)
h
2
⋅
f
′
′
(
x
0
+
θ
h
)
=
0
(1)
f(x_0+\lambda h)=\lambda f(x_0+h)+(1-\lambda)f(x_0)+\frac{\lambda}{2}(\lambda -1)h^2\cdot f^{\prime\prime}(x_0+\theta h)=0 \tag{1}
f(x0+λh)=λf(x0+h)+(1−λ)f(x0)+2λ(λ−1)h2⋅f′′(x0+θh)=0(1)
证明
因
0
<
λ
<
1
0<\lambda<1
0<λ<1,可取数
M
M
M,使得
f
(
x
0
+
λ
h
)
−
λ
f
(
x
0
+
h
)
−
(
1
−
λ
)
f
(
x
0
)
−
λ
2
(
λ
−
1
)
h
2
⋅
M
=
0
(2)
f(x_0+\lambda h)-\lambda f(x_0+h)-(1-\lambda)f(x_0)-\frac{\lambda}{2}(\lambda -1)h^2\cdot M = 0 \tag{2}
f(x0+λh)−λf(x0+h)−(1−λ)f(x0)−2λ(λ−1)h2⋅M=0(2)
故只要证明:
∃
θ
∈
(
0
,
1
)
\exists\,\theta\in(0,1)
∃θ∈(0,1),使得
M
=
f
′
′
(
x
0
+
θ
h
)
M=f^{\prime\prime}(x_0+\theta h)
M=f′′(x0+θh)。取
λ
\lambda
λ作为变数,记为
t
t
t。
令
F
(
t
)
=
f
(
x
0
+
t
h
)
−
t
f
(
x
0
+
h
)
−
(
1
−
t
)
f
(
x
0
)
−
t
2
(
t
−
1
)
h
2
⋅
M
(3)
F(t)=f(x_0+th)-tf(x_0+h)-(1-t)f(x_0)-\frac{t}{2}(t-1)h^2\cdot M\tag{3}
F(t)=f(x0+th)−tf(x0+h)−(1−t)f(x0)−2t(t−1)h2⋅M(3)
则
F
(
t
)
F(t)
F(t)在
[
0
,
1
]
[0,1]
[0,1]上二次可微,且有三个零点
F
(
0
)
=
F
(
1
)
=
F
(
λ
)
=
0
F(0)=F(1)=F(\lambda)=0
F(0)=F(1)=F(λ)=0
两次应用
R
o
l
l
e
Rolle
Rolle定理,可知
∃
θ
∈
(
0
,
1
)
\exists \,\theta\in(0,1)
∃θ∈(0,1)使得
F
′
′
(
θ
)
=
0
F^{\prime\prime}(\theta)=0
F′′(θ)=0
据式
(
3
)
(3)
(3),此即
M
=
f
′
′
(
x
0
+
θ
h
)
M=f^{\prime\prime}(x_0+\theta h)
M=f′′(x0+θh)。代回
(
2
)
(2)
(2)式,移项,即得欲证的式
(
1
)
(1)
(1)。
22.设
f
(
x
)
f(x)
f(x)在区间
[
0
,
1
]
[0,1]
[0,1]上可微,
f
(
0
)
=
0
f(0)=0
f(0)=0,
f
(
1
)
=
1
f(1)=1
f(1)=1,
k
1
,
k
2
,
⋯
,
k
n
k_1,k_2,\cdots,k_n
k1,k2,⋯,kn为
n
n
n个正数。证明在区间
[
0
,
1
]
[0,1]
[0,1]内存在一组互不相等的数
x
1
,
x
2
,
⋯
,
x
n
x_1,x_2,\cdots,x_n
x1,x2,⋯,xn,使得
∑
i
=
1
n
k
i
f
′
(
x
i
)
=
∑
i
=
1
n
k
i
\sum_{i=1}^{n}{\frac{k_i}{f^{\prime}(x_i)}}=\sum_{i=1}^{n}k_i
i=1∑nf′(xi)ki=i=1∑nki
证明
记
m
=
∑
i
=
1
n
k
i
m=\sum\limits_{i=1}^{n}{k_i}
m=i=1∑nki,
λ
i
=
k
i
m
(
i
=
1
,
2
,
⋯
)
\lambda_i=\frac{k_i}{m}(i=1,2,\cdots)
λi=mki(i=1,2,⋯)。则
0
<
λ
i
<
1
,
λ
1
+
λ
2
+
⋯
+
λ
n
=
1
0<\lambda_i<1,\lambda_1+\lambda_2+\cdots+\lambda_n=1
0<λi<1,λ1+λ2+⋯+λn=1。因
f
(
0
)
=
0
,
f
(
1
)
=
1
f(0)=0,f(1)=1
f(0)=0,f(1)=1。
f
(
x
)
f(x)
f(x)在
[
0
,
1
]
[0,1]
[0,1]上连续,故由介值性,
∃
\exists
∃点
c
1
∈
(
0
,
1
)
c_1\in(0,1)
c1∈(0,1)使得
f
(
c
1
)
=
λ
1
f(c_1)=\lambda_1
f(c1)=λ1。又由
λ
1
<
λ
1
+
λ
2
<
1
\lambda_1<\lambda_1+\lambda_2<1
λ1<λ1+λ2<1,知
∃
c
2
∈
(
c
1
,
1
)
\exists\,c_2\in(c_1,1)
∃c2∈(c1,1)使得
f
(
c
2
)
=
λ
1
+
λ
2
f(c_2)=\lambda_1+\lambda_2
f(c2)=λ1+λ2。如此继续下去,顺次找到点
0
<
c
1
<
c
2
<
⋯
<
c
n
−
1
<
c
n
=
1
0<c_1<c_2<\cdots<c_{n-1}<c_n=1
0<c1<c2<⋯<cn−1<cn=1
使得
f
(
c
i
)
=
∑
k
=
1
i
λ
k
(
i
=
1
,
2
,
⋯
,
n
)
f(c_i)=\sum_{k=1}^{i}\lambda_k(i=1,2,\cdots,n)
f(ci)=k=1∑iλk(i=1,2,⋯,n)
应用
L
a
g
r
a
n
g
e
Lagrange
Lagrange定理,
∃
x
i
∈
(
c
i
−
1
,
c
i
)
(
c
0
=
0
)
\exists\,x_i\in(c_{i-1},c_i)(c_0=0)
∃xi∈(ci−1,ci)(c0=0),使得
f
′
(
x
i
)
=
f
(
c
i
)
−
f
(
c
i
−
1
)
c
i
−
c
i
−
1
=
λ
i
c
i
−
c
i
−
1
f^{\prime}(x_i)=\frac{f(c_i)-f(c_{i-1})}{c_i-c_{i-1}}=\frac{\lambda_i}{c_i-c_{i-1}}
f′(xi)=ci−ci−1f(ci)−f(ci−1)=ci−ci−1λi
即
λ
i
f
′
(
x
i
)
=
c
i
−
c
i
−
1
(
i
=
1
,
2
,
⋯
,
n
)
\frac{\lambda_i}{f^{\prime}(x_i)}=c_i-c_{i-1}(i=1,2,\cdots,n)
f′(xi)λi=ci−ci−1(i=1,2,⋯,n)
从而
∑
i
=
1
n
λ
i
f
′
(
x
i
)
=
∑
i
=
1
n
(
c
i
−
c
i
−
1
)
=
c
n
−
c
0
=
1
\sum\limits_{i=1}^{n}\frac{\lambda_i}{f^{\prime}(x_i)}=\sum_{i=1}^{n}{(c_i-c_{i-1})}=c_n-c_0=1
i=1∑nf′(xi)λi=i=1∑n(ci−ci−1)=cn−c0=1
将
λ
i
=
k
i
m
\lambda_i=\frac{k_i}{m}
λi=mki代入,即
∑
i
=
1
n
k
i
f
′
(
x
i
)
=
∑
i
=
1
n
k
i
\sum_{i=1}^{n}\frac{k_i}{f^{\prime}(x_i)}=\sum_{i=1}^{n}k_i
i=1∑nf′(xi)ki=i=1∑nki
23.设
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上连续,在
(
a
,
b
)
(a,b)
(a,b)内有二阶导数,试证存在
c
∈
(
a
,
b
)
c\in(a,b)
c∈(a,b)使
f
(
b
)
−
2
f
(
a
+
b
2
)
+
f
(
a
)
=
(
b
−
a
)
2
4
f
′
′
(
c
)
(1)
f(b)-2f\left(\frac{a+b}{2}\right)+f(a)=\frac{(b-a)^2}{4}f^{\prime\prime}(c)\tag{1}
f(b)−2f(2a+b)+f(a)=4(b−a)2f′′(c)(1)
证明
(
1
)
(1)
(1)式左端
f
(
b
)
−
2
f
(
a
+
b
2
)
+
f
(
a
)
=
[
f
(
b
)
−
f
(
a
+
b
2
)
]
−
[
f
(
a
+
b
2
)
−
f
(
a
)
]
=
[
f
(
a
+
b
2
+
b
−
a
2
)
−
f
(
a
+
b
2
)
]
−
[
f
(
a
+
b
−
a
2
)
−
f
(
a
)
]
\begin{aligned} f(b)-2f\left(\frac{a+b}{2}\right)+f(a)&=\left[f(b)-f\left(\frac{a+b}{2}\right)\right]-\left[f\left(\frac{a+b}{2}\right)-f(a)\right]\\&=\left[f\left(\frac{a+b}{2}+\frac{b-a}{2}\right)-f\left(\frac{a+b}{2}\right)\right] \\&-\left[f\left(a+\frac{b-a}{2}\right)-f(a)\right] \end{aligned}
f(b)−2f(2a+b)+f(a)=[f(b)−f(2a+b)]−[f(2a+b)−f(a)]=[f(2a+b+2b−a)−f(2a+b)]−[f(a+2b−a)−f(a)]
做辅助函数
φ
(
x
)
=
f
(
x
+
b
−
a
2
)
−
f
(
x
)
\varphi(x)=f\left(x+\frac{b-a}{2}\right)-f(x)
φ(x)=f(x+2b−a)−f(x)
则
上 式 = φ ( a + b 2 ) − φ ( a ) = φ ′ ( ξ ) ⋅ ( a + b 2 − a ) = φ ′ ( ξ ) b − a 2 ξ ∈ ( a , a + b 2 ) = [ f ′ ( ξ + b − a 2 ) − f ′ ( ξ ) ] b − a 2 = f ′ ′ ( ξ + θ b − a 2 ) ⋅ b − a 2 ⋅ b − a 2 θ ∈ ( 0 , 1 ) = f ′ ′ ( c ) ⋅ ( b − a ) 2 4 , c = ξ + θ b − a 2 ∈ ( a , b ) \begin{aligned} 上式&=\varphi\left(\frac{a+b}{2}\right)-\varphi(a)\\&=\varphi^{\prime}(\xi)\cdot\left(\frac{a+b}{2}-a\right)=\varphi^{\prime}(\xi)\frac{b-a}{2}\,\,\xi\in\left(a,\frac{a+b}{2}\right)\\&=\left[f^{\prime}\left(\xi+\frac{b-a}{2}\right)-f^{\prime}(\xi)\right]\frac{b-a}{2}\\&=f^{\prime\prime}\left(\xi+\theta \frac{b-a}{2}\right)\cdot\frac{b-a}{2}\cdot\frac{b-a}{2}\,\,\theta\in(0,1)\\&=f^{\prime\prime}(c)\cdot\frac{(b-a)^2}{4},c=\xi+\theta\frac{b-a}{2}\in(a,b) \end{aligned} 上式=φ(2a+b)−φ(a)=φ′(ξ)⋅(2a+b−a)=φ′(ξ)2b−aξ∈(a,2a+b)=[f′(ξ+2b−a)−f′(ξ)]2b−a=f′′(ξ+θ2b−a)⋅2b−a⋅2b−aθ∈(0,1)=f′′(c)⋅4(b−a)2,c=ξ+θ2b−a∈(a,b)
24.设
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上连续,
(
a
,
b
)
(a,b)
(a,b)内可导
(
0
≤
a
≤
b
)
(0\leq a\leq b)
(0≤a≤b),
f
(
a
)
≠
f
(
b
)
f(a)\neq f(b)
f(a)=f(b),证明:
∃
ξ
,
η
∈
(
a
,
b
)
\exists\,\xi,\eta\in(a,b)
∃ξ,η∈(a,b)使得
f
′
(
ξ
)
=
a
+
b
2
η
f
′
(
η
)
(1)
f^{\prime}(\xi)=\frac{a+b}{2\eta}f^{\prime}(\eta)\tag{1}
f′(ξ)=2ηa+bf′(η)(1)
证明
(
1
)
(1)
(1)式等价于
f
′
(
ξ
)
1
(
b
−
a
)
=
f
′
(
η
)
2
η
(
b
2
−
a
2
)
(2)
\frac{f^{\prime}(\xi)}{1}(b-a)=\frac{f^{\prime}(\eta)}{2\eta}(b^2-a^2)\tag{2}
1f′(ξ)(b−a)=2ηf′(η)(b2−a2)(2)
为证此式,只要取
F
(
x
)
=
f
(
x
)
F(x)=f(x)
F(x)=f(x),取
G
(
x
)
=
x
G(x)=x
G(x)=x和
x
2
x^2
x2在
[
a
,
b
]
[a,b]
[a,b]上分别应用
C
a
u
t
h
y
Cauthy
Cauthy中值定理,则知
f
(
b
)
−
f
(
a
)
=
f
′
(
ξ
)
1
⋅
(
b
−
a
)
=
f
′
(
η
)
2
η
(
b
2
−
a
2
)
,
f(b)-f(a)=\frac{f^{\prime}(\xi)}{1}\cdot(b-a)=\frac{f^{\prime}(\eta)}{2\eta}(b^2-a^2),
f(b)−f(a)=1f′(ξ)⋅(b−a)=2ηf′(η)(b2−a2),
其中
ξ
,
η
∈
(
a
,
b
)
\xi,\eta\in(a,b)
ξ,η∈(a,b)