Prompt提示工程上手指南:基础原理及实践(三)-Prompt个性知识库引导

前言

Prompt系列的第二期文章已经将所有的Prompt工程主流策略讲解完毕,共涉及到六种Prompt类别模型以及具体生产内容详解。再结合系列第一篇文章具体对Prompt工程的详细介绍,也就可以达到Prompt工程师的初步入门,现在如果掌握了这些基础技能那么就可以去学习一些更高阶的Prompt技能,伴随GPT-4 Turbo达到可生成自定义的GPTs,能够搭建属于业务目标的知识数据库,我们现在需要结合知识库的种类和数据形式,去做Prompt的迭代以达到我们想要的语言生成结果。

大模型应用总体架构

一般来说我们所掌握的Prompt技能都是要结合业务逻辑去构建,因此我们了解了整个Prompt Engineering之后就不能只拿Prompt局部做实验,而是要看整体的大模型落地运用时Prompt工程所处地位。以AI Agent实际项目搭建为例,我们进行整个大模型开发剖析:

上图清晰可见Prompt Engineering在整体AI原生开发流程中的应用,模型微调一次和训练一次的成本还是比较大的,想要在已经训练

评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fanstuck

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值