Moveit + Gazebo:搭建双臂仿真平台(方案一)

环境ubuntu20.04 ROS-noetic

        国内少有搭建Moveit和Gazebo联合仿真的教程,对于搭建双臂等复杂的仿真平台更是鲜有资料,因此想要把自己的见解分享出来供大家参考,共同提高。

        本文提出了两种方法实现Moveit 对双臂的规划,并在gazebo中进行仿真

方案一

        首先是方案一,主要思路是:使用moveit setup assistant配置规划组的时候,创建一个父组,包含两条臂的规划组。

        先说方案一的优缺点:

        优点:两条臂互相知道对方的存在,Moveit进行规划的时候会考虑到两条臂之间的避障

        缺点:Moveit不能实现对两条臂的独立控制,如果对单独臂的规划组进行操作时,规划动作的执行是阻塞的,即一条臂执行完,另一条臂才能继续执行;如果对含有两个臂的规划组的父组进行操作时,存在的问题是:Moveit规划时总是保证两个臂的运行时间是一致的,即两个臂的轨迹长度相差较大时,Moveit使两个臂的运行速度相差很大,保证两者同时开始,同时结束。

        这样不能实现我想要的两个臂比较独立的控制,但是实现起来比较简单。

实现的效果展示:

主要过程参考moveit官方教程:Multiple Robot Arms — moveit_tutorials Noetic documentation

         但是官方教程中,并未详细说明如何控制双臂同时规划,所以这里我们对该部分详细说明,教程中已有的部分不再赘述,建议读者先仔细阅读教程。


Moveit setup assistant配置

        进入正文,首先在 moveit setup assistant配置部分,我们在完成教程已有的内容后,还需要增加一个group,我这里命令为dual_arm(ps:这里前后图片规划组的名称一个是dual_arm 一个是dual_arms,是我两次实践过程中命名不同而已,读者要注意统一,别被我误导)

        选择 add subgroups 然后把之前创建的四个group(这部分内容看官方教程)分别是right_arm 、left_arm、left_hand、right_hand添加进去

        然后是关于eef末端执行器的配置,制定两个末端执行器,这里是为了方便后续编程同时控制双臂,指明两个臂各自的末端执行器,后续才能通过编程接口进行控制。

        这里moveit setup assistant配置我们需要额外添加的部分(或者与教程不同的部分)就全部完成了,生成moveit_config包,我这里命名的是 dual_arm_moveit_config,生成之后进行编译,运行demo.launch ,运行效果如下图所示:

         当rviz界面左下角MotionPlanning插件,Planning Group选择dual_arms(dual_arm)时,可以看到两条臂都有可以被拖动的标记,拖动 goal state到一个你想要的位置,然后plan execute,可以看到两条臂同时运动了!

        如果两条臂处于碰撞状体时,接触的相应部分也会变红,这说明Moveit在规划时会考虑两条臂之间的碰撞。

        当然Planning Group选择right_arm或者left_arm时也能实现对单独臂进行控制。


编程接口

        刚才仅是在rviz中的可视化界面实现了控制,下面介绍如何通过编程接口进行对双臂的控制。

先给出代码,主要的介绍都在注释中。

#include <ros/ros.h>
#include <moveit/move_group_interface/move_group_interface.h>
//包含需要的头文件
int main(int argc, char** argv)
{
    ros::init(argc,argv,"demo");
    ros::NodeHandle node_handle;
//ros节点初始化
//开辟线程,主要作用是为move group节点获取当前机器人状态
    ros::AsyncSpinner spinner(1);
    spinner.start();
//这些string都是之前我们在setup assistant配置中定义的,一定要保持一致
    static const std::string right_arm_group = "right_arm";
    static const std::string left_arm_group = "left_arm";
    static const std::string dual_arm_group = "dual_arms";
    static const std::string right_end_effector_link = "right_arm_link8";
    static const std::string left_end_effector_link = "left_arm_link8";
//实例化move group接口
    moveit::planning_interface::MoveGroupInterface right_arm_move_group_interface(right_arm_group);
    moveit::planning_interface::MoveGroupInterface left_arm_move_group_interface(left_arm_group);
    moveit::planning_interface::MoveGroupInterface dual_arm_move_group_interface(dual_arm_group);
//这个ready也是在setup assistant配置中提前定义好的pose,详细过程见官方教程
    right_arm_move_group_interface.setNamedTarget("ready");
    left_arm_move_group_interface.setNamedTarget("ready");
//实例化一些plan
    moveit::planning_interface::MoveGroupInterface::Plan right_arm_plan;
    moveit::planning_interface::MoveGroupInterface::Plan left_arm_plan;
    moveit::planning_interface::MoveGroupInterface::Plan dual_arm_plan;
//对机械臂运行到ready位姿进行规划和执行,可以看到机械臂的运动是阻塞执行的,直到right arm执行完,才去执行left arm,因此这是我们需要dual arm group的原因
    bool rgt_success = (right_arm_move_group_interface.plan(right_arm_plan) == moveit::planning_interface::MoveItErrorCode::SUCCESS);
    if(rgt_success)
    {
        right_arm_move_group_interface.execute(right_arm_plan);
    }
    bool lft_success = (left_arm_move_group_interface.plan(left_arm_plan) == moveit::planning_interface::MoveItErrorCode::SUCCESS);
    if(lft_success)
    {
        left_arm_move_group_interface.execute(left_arm_plan);
    }
//实例化两个pose,从当前pose进行修改,获得target pose
    geometry_msgs::PoseStamped current_right_arm_pose = right_arm_move_group_interface.getCurrentPose();
    geometry_msgs::PoseStamped current_left_arm_pose = left_arm_move_group_interface.getCurrentPose();

    geometry_msgs::PoseStamped target_right_arm_pose = current_right_arm_pose;
    target_right_arm_pose.pose.position.z -= 0.3;
    target_right_arm_pose.pose.position.x += 0.4;
    target_right_arm_pose.pose.position.x = -target_right_arm_pose.pose.position.x;

    geometry_msgs::PoseStamped target_left_arm_pose = current_left_arm_pose;
    target_left_arm_pose.pose.position.z += 0.2;
//设置双臂的规划目标,可以看到setPoseTarget函数通过指定了末端执行器的link来区分两个臂,可以看到两个臂是同时运行的dual_arm_move_group_interface.setPoseTarget(target_right_arm_pose,right_end_effector_link);
    dual_arm_move_group_interface.setPoseTarget(target_left_arm_pose,left_end_effector_link);
    bool dual_success = (dual_arm_move_group_interface.plan(dual_arm_plan) == moveit::planning_interface::MoveItErrorCode::SUCCESS);
    if(dual_success)
    {
        dual_arm_move_group_interface.execute(dual_arm_plan);
    }
//结束
    ros::shutdown();
    return 0;
}

 这是官网code API文档介绍:Source Code & API | MoveIt

cmakelist:

cmake_minimum_required(VERSION 3.0.2)
project(dual_arms)

## Compile as C++11, supported in ROS Kinetic and newer
# add_compile_options(-std=c++11)

## Find catkin macros and libraries
## if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz)
## is used, also find other catkin packages
find_package(catkin REQUIRED COMPONENTS
        roscpp
        geometry_msgs
        moveit_ros_planning_interface
        moveit_ros_planning
)

## System dependencies are found with CMake's conventions
# find_package(Boost REQUIRED COMPONENTS system)


## Uncomment this if the package has a setup.py. This macro ensures
## modules and global scripts declared therein get installed
## See http://ros.org/doc/api/catkin/html/user_guide/setup_dot_py.html
# catkin_python_setup()

################################################
## Declare ROS messages, services and actions ##
################################################

## To declare and build messages, services or actions from within this
## package, follow these steps:
## * Let MSG_DEP_SET be the set of packages whose message types you use in
##   your messages/services/actions (e.g. std_msgs, actionlib_msgs, ...).
## * In the file package.xml:
##   * add a build_depend tag for "message_generation"
##   * add a build_depend and a exec_depend tag for each package in MSG_DEP_SET
##   * If MSG_DEP_SET isn't empty the following dependency has been pulled in
##     but can be declared for certainty nonetheless:
##     * add a exec_depend tag for "message_runtime"
## * In this file (CMakeLists.txt):
##   * add "message_generation" and every package in MSG_DEP_SET to
##     find_package(catkin REQUIRED COMPONENTS ...)
##   * add "message_runtime" and every package in MSG_DEP_SET to
##     catkin_package(CATKIN_DEPENDS ...)
##   * uncomment the add_*_files sections below as needed
##     and list every .msg/.srv/.action file to be processed
##   * uncomment the generate_messages entry below
##   * add every package in MSG_DEP_SET to generate_messages(DEPENDENCIES ...)

## Generate messages in the 'msg' folder
# add_message_files(
#   FILES
#   Message1.msg
#   Message2.msg
# )

## Generate services in the 'srv' folder
# add_service_files(
#   FILES
#   Service1.srv
#   Service2.srv
# )

## Generate actions in the 'action' folder
# add_action_files(
#   FILES
#   Action1.action
#   Action2.action
# )

## Generate added messages and services with any dependencies listed here
# generate_messages(
#   DEPENDENCIES
#   std_msgs  # Or other packages containing msgs
# )

################################################
## Declare ROS dynamic reconfigure parameters ##
################################################

## To declare and build dynamic reconfigure parameters within this
## package, follow these steps:
## * In the file package.xml:
##   * add a build_depend and a exec_depend tag for "dynamic_reconfigure"
## * In this file (CMakeLists.txt):
##   * add "dynamic_reconfigure" to
##     find_package(catkin REQUIRED COMPONENTS ...)
##   * uncomment the "generate_dynamic_reconfigure_options" section below
##     and list every .cfg file to be processed

## Generate dynamic reconfigure parameters in the 'cfg' folder
# generate_dynamic_reconfigure_options(
#   cfg/DynReconf1.cfg
#   cfg/DynReconf2.cfg
# )

###################################
## catkin specific configuration ##
###################################
## The catkin_package macro generates cmake config files for your package
## Declare things to be passed to dependent projects
## INCLUDE_DIRS: uncomment this if your package contains header files
## LIBRARIES: libraries you create in this project that dependent projects also need
## CATKIN_DEPENDS: catkin_packages dependent projects also need
## DEPENDS: system dependencies of this project that dependent projects also need
catkin_package(
#  INCLUDE_DIRS include
#  LIBRARIES dual_arms
#  CATKIN_DEPENDS other_catkin_pkg
#  DEPENDS system_lib
)

###########
## Build ##
###########

## Specify additional locations of header files
## Your package locations should be listed before other locations
include_directories(
 include
 ${catkin_INCLUDE_DIRS}
)

## Declare a C++ library
# add_library(${PROJECT_NAME}
#   src/${PROJECT_NAME}/dual_arms.cpp
# )

## Add cmake target dependencies of the library
## as an example, code may need to be generated before libraries
## either from message generation or dynamic reconfigure
# add_dependencies(${PROJECT_NAME} ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})

## Declare a C++ executable
## With catkin_make all packages are built within a single CMake context
## The recommended prefix ensures that target names across packages don't collide
# add_executable(${PROJECT_NAME}_node src/dual_arms_node.cpp)
 add_executable(demo src/demo.cpp)

## Rename C++ executable without prefix
## The above recommended prefix causes long target names, the following renames the
## target back to the shorter version for ease of user use
## e.g. "rosrun someones_pkg node" instead of "rosrun someones_pkg someones_pkg_node"
# set_target_properties(${PROJECT_NAME}_node PROPERTIES OUTPUT_NAME node PREFIX "")

## Add cmake target dependencies of the executable
## same as for the library above
# add_dependencies(${PROJECT_NAME}_node ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})
 add_dependencies(demo ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})

## Specify libraries to link a library or executable target against
# target_link_libraries(${PROJECT_NAME}_node
#   ${catkin_LIBRARIES}
# )
 target_link_libraries(demo
   ${catkin_LIBRARIES}
 )
#############
## Install ##
#############

# all install targets should use catkin DESTINATION variables
# See http://ros.org/doc/api/catkin/html/adv_user_guide/variables.html

## Mark executable scripts (Python etc.) for installation
## in contrast to setup.py, you can choose the destination
# catkin_install_python(PROGRAMS
#   scripts/my_python_script
#   DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
# )

## Mark executables for installation
## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_executables.html
# install(TARGETS ${PROJECT_NAME}_node
#   RUNTIME DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
# )

## Mark libraries for installation
## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_libraries.html
# install(TARGETS ${PROJECT_NAME}
#   ARCHIVE DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
#   LIBRARY DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
#   RUNTIME DESTINATION ${CATKIN_GLOBAL_BIN_DESTINATION}
# )

## Mark cpp header files for installation
# install(DIRECTORY include/${PROJECT_NAME}/
#   DESTINATION ${CATKIN_PACKAGE_INCLUDE_DESTINATION}
#   FILES_MATCHING PATTERN "*.h"
#   PATTERN ".svn" EXCLUDE
# )

## Mark other files for installation (e.g. launch and bag files, etc.)
# install(FILES
#   # myfile1
#   # myfile2
#   DESTINATION ${CATKIN_PACKAGE_SHARE_DESTINATION}
# )

#############
## Testing ##
#############

## Add gtest based cpp test target and link libraries
# catkin_add_gtest(${PROJECT_NAME}-test test/test_dual_arms.cpp)
# if(TARGET ${PROJECT_NAME}-test)
#   target_link_libraries(${PROJECT_NAME}-test ${PROJECT_NAME})
# endif()

## Add folders to be run by python nosetests
# catkin_add_nosetests(test)

效果视频

Moveit+Gazebo:搭建双臂仿真平台(方案一)_哔哩哔哩_bilibili 

评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值