文章目录
任务说明
闯关任务需要在关键步骤当中截图!
任务 | 描述 | 时间 |
---|---|---|
模型下载 | 使用Hugging Face平台、魔搭社区平台(可选)和魔乐社区平台(可选)下载文档中提到的模型(至少需要下载config.json文件、model.safetensors.index.json文件),请在必要的步骤以及结果当中截图。 | 20min |
模型上传(可选) | 将我们下载好的config.json文件(也自行添加其他模型相关文件)上传到对应HF平台和魔搭社区平台,并截图。 | 10min |
Space上传(可选) | 在HF平台上使用Spaces并把intern_cobuild部署成功,关键步骤截图。 | 10min |
1 Hugging Face
1.1 简要介绍
Hugging Face 最初专注于开发聊天机器人服务。尽管他们的聊天机器人项目并未取得预期的成功,但他们在GitHub上开源的Transformers库却意外地在机器学习领域引起了巨大轰动。如今,Hugging Face已经发展成为一个拥有超过100,000个预训练模型和10,000个数据集的平台,被誉为机器学习界的GitHub。
Hugging Face 官网
1.2 InternLM模型下载
在正式下载之前,我们先要介绍一下HF的Transformers库,作为HF最核心的项目,它可以:
- 直接使用预训练模型进行推理
- 提供了大量预训练模型可供使用
- 使用预训练模型进行迁移学习
因此在使用HF前,我们需要下载Transformers等一些常用依赖库
这里我们以internlm2_5-1_8b举例,查看Hugging Face上该模型的地址
https://huggingface.co/internlm/internlm2_5-1_8b
因为网络和磁盘有限的原因,强烈不建议在 InternStudio 运行,因此这里使用CodeSpace
https://github.com/codespaces
Github CodeSpace是Github推出的线上代码平台,提供了一系列templates,我们这里选择Jupyter Notebook进行创建环境。创建好环境后,可以进入网页版VSCode的界面,这就是CodeSpace提供给我们的在线编程环境。
在界面下方的终端(terminal)安装以下依赖,便于模型运行。
# 安装transformers
pip install transformers==4.38
pip install sentencepiece==0.1.99
pip install einops==0.8.0
pip install protobuf==5.27.2
pip install accelerate==0.33.0
考虑到个人GitHub CodeSpace硬盘空间有限(32GB可用),而7B的模型相对较大,这里我们先演示如何下载模型文件夹的特定文件。
考虑到CodeSpace平台上默认的用户权限不是root权限,这里为方便演示直接在工作区创建文件,即 /workspaces/codespaces-jupyter 目录
以下载模型的配置文件为例,先新建一个hf_download_josn.py 文件
touch hf_download_josn.py
在这个文件中,粘贴以下代码
import os
from huggingface_hub import hf_hub_download
# 指定模型标识符
repo_id = "internlm/internlm2_5-7b"
# 指定要下载的文件列表
files_to_download = [
{
"filename": "config.json"},
{
"filename": "model.safetensors.index.json"}
]
# 创建一个目录来存放下载的文件
local_dir = f"{
repo_id.split('/')[1]}"
os.makedirs(local_dir, exist_ok=True)
# 遍历文件列表并下载每个文件
for file_info in files_to_download:
file_path = hf_hub_download(
repo_id=repo_id,
filename=file_info["filename"],
local_dir=local_dir
)
print(f"{
file_info['filename']} file downloaded to: {
file_path}"