Matrix
注:这里使用英文,感觉英文解释的更清楚
定义
Matrix: Pectangular array of numbers
dimension of matrix: the number of rows × \times ×the number of column
4
×
2
4 \times 2
4×2matrix(
R
4
×
2
R^{4\times2}
R4×2)
[
1902
191
1371
821
949
1437
147
1448
]
\begin{bmatrix} {1902}&{191}\\ {1371}&{821}\\ {949}&{1437}\\ {147}&{1448}\\ \end{bmatrix}
⎣⎢⎢⎡1902137194914719182114371448⎦⎥⎥⎤
2
×
3
2 \times 3
2×3matrix(
R
2
×
3
R^{2\times3}
R2×3)
[
1
2
3
4
5
6
]
\begin{bmatrix} {1}&{2}&{3}\\ {4}&{5}&{6}\\ \end{bmatrix}
[142536]
Matrix Element(entries of matrix)
A
=
[
1902
191
1371
821
949
1437
147
1448
]
A=\left [ \begin{matrix} {1902}&{191}\\ {1371}&{821}\\ {949}&{1437}\\ {147}&{1448} \end{matrix} \right]
A=⎣⎢⎢⎡1902137194914719182114371448⎦⎥⎥⎤
A
i
j
A_{ij}
Aij:“i, j entry” in the
i
t
h
i^{th}
ith row,
j
t
h
j^{th}
jth column
A
11
A_{11}
A11=1902
A
12
A_{12}
A12=191
A
32
A_{32}
A32=1437
A
41
A_{41}
A41=147
A
43
A_{43}
A43= undefined(error)(全部划掉)
Vector: An n × \times × 1 matrix
4-dimensional vector (
R
4
R^4
R4)
y
=
[
460
232
315
178
]
y=\left [ \begin{matrix} {460}\\ {232}\\ {315}\\ {178} \end{matrix} \right]
y=⎣⎢⎢⎡460232315178⎦⎥⎥⎤
y
i
y_i
yi=
i
t
h
i^{th}
ith element
y
1
y_1
y1=460
y
2
y_2
y2=232
y
3
y_3
y3=315
y
4
y_4
y4=178
1-indexed vs 0-index
y
=
[
y
1
y
2
y
3
y
4
]
y=\left [ \begin{matrix} {y_1}\\ {y_2}\\ {y_3}\\ {y_4} \end{matrix} \right]
y=⎣⎢⎢⎡y1y2y3y4⎦⎥⎥⎤
y
=
[
y
0
y
1
y
2
y
3
]
y=\left [ \begin{matrix} {y_0}\\ {y_1}\\ {y_2}\\ {y_3} \end{matrix} \right]
y=⎣⎢⎢⎡y0y1y2y3⎦⎥⎥⎤
Matices
→
\to
→一般大写字母 Vector
→
\to
→小写
Scalar → \to → 对象是单个值,不是vector or matrix.(标量)
R
→
\to
→the set of sccalar real numbers(标量实数集)
R
n
→
R^n\to
Rn→ n-dimensional vectors of real numbers(实数n维向量)
Matrix Addition
[
1
0
2
5
3
1
]
+
[
4
0.5
2
5
0
2
]
=
[
5
0.5
4
10
3
2
]
\begin{bmatrix} {1}&{0}\\ {2}&{5}\\ {3}&{1}\\ \end{bmatrix}+\begin{bmatrix} {4}&{0.5}\\ {2}&{5}\\ {0}&{2}\\ \end{bmatrix}=\begin{bmatrix} {5}&{0.5}\\ {4}&{10}\\ {3}&{2}\\ \end{bmatrix}
⎣⎡123051⎦⎤+⎣⎡4200.552⎦⎤=⎣⎡5430.5102⎦⎤
3
×
2
m
a
t
r
i
x
+
3
×
2
m
a
t
r
i
x
=
3
×
2
m
a
t
r
i
x
3\times2 matrix+3\times2 matrix=3\times2 matrix
3×2matrix+3×2matrix=3×2matrix
[
1
0
2
5
3
1
]
+
[
4
0.5
2
5
]
=
e
r
r
o
r
(
没
有
意
义
)
\begin{bmatrix} {1}&{0}\\ {2}&{5}\\ {3}&{1}\\ \end{bmatrix}+\begin{bmatrix} {4}&{0.5}\\ {2}&{5}\\ \end{bmatrix}=error( 没有意义)
⎣⎡123051⎦⎤+[420.55]=error(没有意义)
Scalar Multiplication
3
×
[
1
0
2
5
3
1
]
=
[
3
0
6
15
9
3
]
=
[
1
0
2
5
3
1
]
×
3
3\times\begin{bmatrix} {1}&{0}\\ {2}&{5}\\ {3}&{1}\\ \end{bmatrix}=\begin{bmatrix} {3}&{0}\\ {6}&{15}\\ {9}&{3}\\ \end{bmatrix}=\begin{bmatrix} {1}&{0}\\ {2}&{5}\\ {3}&{1}\\ \end{bmatrix}\times3
3×⎣⎡123051⎦⎤=⎣⎡3690153⎦⎤=⎣⎡123051⎦⎤×3
[
4
0
6
3
]
/
4
=
1
4
[
4
0
6
3
]
=
[
1
0
3
2
3
4
]
\begin{bmatrix} {4}&{0}\\ {6}&{3}\\ \end{bmatrix}/4=\frac{1}{4}\begin{bmatrix} {4}&{0}\\ {6}&{3}\\ \end{bmatrix}=\begin{bmatrix} {1}&{0}\\ {\frac{3}{2}}&{\frac{3}{4}}\\ \end{bmatrix}
[4603]/4=41[4603]=[123043]
Combination of Operands
3 × [ 1 4 2 ] + [ 0 0 5 ] − [ 3 0 2 ] / 3 = [ 3 12 6 ] + [ 0 0 5 ] − [ 1 3 2 3 ] = [ 2 12 10 1 3 ] 3\times\begin{bmatrix} {1}\\ {4}\\ {2} \end{bmatrix}+\begin{bmatrix} {0}\\ {0}\\ {5} \end{bmatrix}-\begin{bmatrix} {3}\\ {0}\\ {2} \end{bmatrix}/3=\begin{bmatrix} {3}\\ {12}\\ {6} \end{bmatrix}+\begin{bmatrix} {0}\\ {0}\\ {5} \end{bmatrix}-\begin{bmatrix} {1}\\ {3}\\ {\frac{2}{3}} \end{bmatrix}=\begin{bmatrix} {2}\\ {12}\\ {10\frac{1}{3}} \end{bmatrix} 3×⎣⎡142⎦⎤+⎣⎡005⎦⎤−⎣⎡302⎦⎤/3=⎣⎡3126⎦⎤+⎣⎡005⎦⎤−⎣⎡1332⎦⎤=⎣⎡2121031⎦⎤
Matrix-vector multiplication
example
[
1
3
4
0
2
1
]
[
1
5
]
=
[
16
4
7
]
\begin{bmatrix} {1}&{3}\\ {4}&{0}\\ {2}&{1} \end{bmatrix}\begin{bmatrix} {1}\\ {5}\\ \end{bmatrix}=\begin{bmatrix} {16}\\ {4}\\ {7} \end{bmatrix}
⎣⎡142301⎦⎤[15]=⎣⎡1647⎦⎤
1
×
1
+
3
×
5
=
16
1\times1+3\times5=16
1×1+3×5=16
4
×
1
+
0
×
5
=
4
4\times1+0\times5=4
4×1+0×5=4
2
×
1
+
1
×
5
=
7
2\times1+1\times5=7
2×1+1×5=7
(
3
×
2
m
a
t
r
i
x
)
(
2
×
1
m
a
t
r
i
x
)
=
(
3
×
1
m
a
t
r
i
x
)
(3\times2 matrix) (2\times1matrix)=(3\times1matrix)
(3×2matrix)(2×1matrix)=(3×1matrix)
Detail
[
a
11
…
a
1
n
⋮
⋱
⋮
a
m
1
…
a
m
n
]
×
[
x
1
⋮
x
n
]
=
[
y
1
⋮
y
m
]
\begin{bmatrix} {a_{11}}&\ldots&{a_{1n}} \\ {\vdots}&\ddots&{\vdots} \\ {a_{m1}}&\ldots&{a_{mn}} \\ \end{bmatrix}\times \begin{bmatrix} {x_{1}}\\ \vdots\\ {x_n} \end{bmatrix}=\begin{bmatrix} {y_1}\\ {\vdots}\\ {y_m} \end{bmatrix}
⎣⎢⎡a11⋮am1…⋱…a1n⋮amn⎦⎥⎤×⎣⎢⎡x1⋮xn⎦⎥⎤=⎣⎢⎡y1⋮ym⎦⎥⎤
To get
y
i
y_i
yi, multiply A’s
i
t
h
i^{th}
ithrow with elements of vector x,and add them up.
example
[
1
2
1
5
0
3
4
0
−
1
−
2
0
0
]
[
1
3
2
1
]
=
[
14
13
−
7
]
\begin{bmatrix} {1}&2&1&5\\ {0}&3&4&0\\ {-1}&{-2}&0&0 \end{bmatrix}\begin{bmatrix} 1\\3\\2\\1 \end{bmatrix}=\begin{bmatrix} 14\\13\\{-7} \end{bmatrix}
⎣⎡10−123−2140500⎦⎤⎣⎢⎢⎡1321⎦⎥⎥⎤=⎣⎡1413−7⎦⎤
1
×
1
+
2
×
3
+
1
×
2
+
5
×
1
=
14
1\times1+2\times3+1\times2+5\times1=14
1×1+2×3+1×2+5×1=14
0
×
1
+
3
×
3
+
0
×
2
+
4
×
1
=
13
0\times1+3\times3+0\times2+4\times1=13
0×1+3×3+0×2+4×1=13
−
1
×
1
+
−
2
×
3
+
0
×
2
+
0
×
1
=
−
7
{-1}\times1+{-2}\times3+0\times2+0\times1={-7}
−1×1+−2×3+0×2+0×1=−7
house size:
{
2104
1416
1534
852
\begin{cases} 2104\\ 1416\\ 1534\\ 852 \end{cases}
⎩⎪⎪⎪⎨⎪⎪⎪⎧210414161534852
h
θ
(
x
)
=
−
a
0
+
0.25
x
h_\theta(x)=-a0+0.25x
hθ(x)=−a0+0.25x
[
1
2104
1
1416
1
1534
1
852
]
×
[
−
40
0.25
]
=
[
−
40
×
1
+
0.25
×
2104
−
40
×
1
+
0.25
×
1416
−
40
×
1
+
0.25
×
1534
−
40
×
1
+
0.25
×
842
]
→
h
θ
(
2104
)
→
h
θ
(
1416
)
→
h
θ
(
1534
)
→
h
θ
(
852
)
\begin{bmatrix} {1}&{2104}\\ {1}&{1416}\\ {1}&{1534}\\ {1}&{852}\\ \end{bmatrix}\times\begin{bmatrix} {-40}\\ {0.25}\\ \end{bmatrix}=\begin{bmatrix} {{-40}\times1+0.25\times2104}\\ {{-40}\times1+0.25\times1416}\\ {{-40}\times1+0.25\times1534}\\ {{-40}\times1+0.25\times842}\\ \end{bmatrix} \begin{matrix} \to h_\theta(2104)\\ \to h_\theta(1416)\\ \to h_\theta(1534)\\ \to h_\theta(852) \end{matrix}
⎣⎢⎢⎡1111210414161534852⎦⎥⎥⎤×[−400.25]=⎣⎢⎢⎡−40×1+0.25×2104−40×1+0.25×1416−40×1+0.25×1534−40×1+0.25×842⎦⎥⎥⎤→hθ(2104)→hθ(1416)→hθ(1534)→hθ(852)
prediction=datamatrix
∗
*
∗parameters
Matrix-matrix multiplication
[
1
3
2
4
0
1
]
×
[
1
3
0
1
5
2
]
=
[
11
10
9
14
]
\begin{bmatrix} {1}&{3}&{2}\\ {4}&{0}&{1}\\ \end{bmatrix}\times\begin{bmatrix} {1}&{3}\\ 0&1 \\5&2 \end{bmatrix}=\begin{bmatrix} {11}&{10}\\ 9&14 \end{bmatrix}
[143021]×⎣⎡105312⎦⎤=[1191014]
[
1
3
2
4
0
1
]
×
[
1
0
5
]
=
[
11
9
]
\begin{bmatrix} {1}&{3}&{2}\\ {4}&{0}&{1}\\ \end{bmatrix}\times\begin{bmatrix} {1}\\ 0 \\5 \end{bmatrix}=\begin{bmatrix} {11}\\ 9 \end{bmatrix}
[143021]×⎣⎡105⎦⎤=[119]
[
1
3
2
4
0
1
]
×
[
3
1
2
]
=
[
10
14
]
\begin{bmatrix} {1}&{3}&{2}\\ {4}&{0}&{1}\\ \end{bmatrix}\times\begin{bmatrix} {3}\\ 1 \\2 \end{bmatrix}=\begin{bmatrix} {10}\\ 14 \end{bmatrix}
[143021]×⎣⎡312⎦⎤=[1014]
Details:
m
×
n
m
a
t
r
i
x
+
n
×
o
m
a
t
r
i
x
=
n
×
o
m
a
t
r
i
x
A
×
B
=
C
m\times n {\kern 2pt} {matrix}+n\times o{\kern 2pt}matrix=n\times o{\kern 1pt}matrix\\ A\times B=C
m×nmatrix+n×omatrix=n×omatrixA×B=C
The
i
t
h
i^{th}
ith column of the matrix C is obtained by mutiplying A withthe
i
t
h
i^{th}
ith column of B(for i =1,2
…
\ldots
…, o)
example
[ 1 3 2 5 ] × [ 0 1 3 2 ] = [ 9 7 15 12 ] \begin{bmatrix} {1}&3\\ 2&5 \end{bmatrix}\times \begin{bmatrix} {0}&1\\ 3&2 \end{bmatrix}=\begin{bmatrix} {9}&7\\ 15&12 \end{bmatrix} [1235]×[0312]=[915712]
house size:
{
2104
1416
1534
852
\begin{cases} 2104\\ 1416\\ 1534\\ 852 \end{cases}
⎩⎪⎪⎪⎨⎪⎪⎪⎧210414161534852
Have 3 competing hypothesis
{
1
、
h
θ
(
x
)
=
−
40
+
0.25
x
1
、
h
θ
(
x
)
=
200
+
0.1
x
1
、
h
θ
(
x
)
=
−
150
+
0.4
x
\begin{cases} 1、h_\theta (x)=-40+0.25x\\ 1、h_\theta (x)=200+0.1x\\ 1、h_\theta (x)=-150+0.4x\\ \end{cases}
⎩⎪⎨⎪⎧1、hθ(x)=−40+0.25x1、hθ(x)=200+0.1x1、hθ(x)=−150+0.4x
[
1
2104
1
1416
1
1543
1
852
]
×
[
−
40
200
−
150
0.25
0.1
0.4
]
=
[
482
410
692
314
342
416
344
352
464
173
285
191
]
\begin{bmatrix} {1}&2104\\ 1&1416\\ 1&1543\\ 1&852 \end{bmatrix}\times \begin{bmatrix} {-40}&200&{-150}\\ 0.25&0.1&0.4 \end{bmatrix}=\begin{bmatrix} 482&410&692\\ 314&342&416 \\344&352&464\\ 173&285&191 \end{bmatrix}
⎣⎢⎢⎡1111210414161543852⎦⎥⎥⎤×[−400.252000.1−1500.4]=⎣⎢⎢⎡482314344173410342352285692416464191⎦⎥⎥⎤
Matrix multiplication
3
×
5
=
5
×
3
3\times 5=5\times3
3×5=5×3 “Commutative”
Let Aand B be matrices.Then in general.
A
×
B
≠
B
×
A
A\times B \ne B\times A
A×B=B×A(not commutative)
E
.
g
.
[
1
1
0
0
]
×
[
0
0
2
0
]
=
[
2
0
0
0
]
≠
[
0
0
2
0
]
×
[
1
1
0
0
]
=
[
0
0
2
2
]
E.g. \begin{bmatrix} {1}&1\\ 0&0\\ \end{bmatrix} \times\begin{bmatrix} {0}&0\\ 2&0\\ \end{bmatrix}=\begin{bmatrix} {2}&0\\ 0&0\\ \end{bmatrix}\\\ne\\\begin{bmatrix} {0}&0\\ 2&0\\ \end{bmatrix}\times \begin{bmatrix} {1}&1\\ 0&0\\ \end{bmatrix} =\begin{bmatrix} {0}&0\\ 2&2\\ \end{bmatrix}
E.g.[1010]×[0200]=[2000]=[0200]×[1010]=[0202]
A
×
B
m
×
n
n
×
m
A
×
B
∼
m
×
m
B
×
A
∼
n
×
n
\begin{array}{|lll} A\times B\\ m\times n\quad n\times m\\ A\times B\sim m\times m \\ B\times A\sim n\times n \end{array}
A×Bm×nn×mA×B∼m×mB×A∼n×n
Associative
3
×
5
×
2
=
(
3
×
5
)
×
2
=
3
×
(
5
×
2
)
3\times 5\times2=({3\times 5})\times2=3\times (5\times2)
3×5×2=(3×5)×2=3×(5×2)
A
×
B
×
C
→
(
A
×
B
)
×
C
→
A
×
(
B
×
C
)
(
s
a
m
e
a
n
s
w
e
r
)
A\times B\times C\quad \to (A\times B)\times C\\\quad\quad\quad\quad\quad\quad \to A\times (B\times C)(same\, answer)
A×B×C→(A×B)×C→A×(B×C)(sameanswer)
Let D=B
×
\times
×C. computeA
A
×
D
A\times D
A×D
Let E=A
×
\times
×B. computeA
E
×
C
E\times C
E×C
Identity Matrix
Denoted
I
I
I(or
I
n
×
n
I_{n\times n}
In×n)
\quad\quad\quad
1
∼
i
d
e
n
t
i
t
y
1\sim identity
1∼identity
\quad\quad\quad
1
×
z
=
z
×
1
=
z
1\times z=z\times 1=z
1×z=z×1=z
\quad\quad\quad
for any z
Example of identity matrix:
[
1
]
[
1
0
0
1
]
[
1
0
0
0
1
0
0
0
1
]
[
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
]
[
1
1
⋱
1
]
(
I
n
f
o
r
m
a
l
l
y
)
\begin{bmatrix} 1 \end{bmatrix}\begin{bmatrix} {1}&0\\ 0&1\\ \end{bmatrix}\begin{bmatrix} 1&0&0\\ 0&1&0\\ 0&0&1 \end{bmatrix}\begin{bmatrix} 1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&1 \end{bmatrix}\begin{bmatrix} 1&{}&{}&{} \\ {}&1&{}&{} \\ {}&{}& \ddots &{} \\ {}&{}&{}&1 \end{bmatrix}(Informally)
[1][1001]⎣⎡100010001⎦⎤⎣⎢⎢⎡1000010000100001⎦⎥⎥⎤⎣⎢⎢⎡11⋱1⎦⎥⎥⎤(Informally)
For any matrix A
A
×
I
=
I
×
A
=
A
m
×
n
n
×
n
m
×
m
m
×
n
m
×
n
A\times I =I\times A=A\\m\times n\quad n\times n\quad m\times m\quad m\times n\quad m\times n
A×I=I×A=Am×nn×nm×mm×nm×n
I
n
×
n
N
o
t
e
:
A
×
B
≠
B
×
A
i
n
g
e
n
e
r
a
l
A
×
I
=
I
×
A
✔
I_{n\times n}\begin{array}{|lll} Note:\\ A\times B\ne B\times A \quad in \,general\\ A\times I= I\times A ✔ \end{array}
In×nNote:A×B=B×AingeneralA×I=I×A✔
Inverse and Transpose(逆运算以及转置矩阵)
1=“Identity”
\quad
3
(
3
−
1
)
=
1
3(3^{-1})=1
3(3−1)=1
\quad
12
(
1
2
−
1
)
=
1
12(12^{-1})=1
12(12−1)=1
Mot all numbers have an inverse
\quad
→
0
(
0
−
1
)
\to0(0^{-1})
→0(0−1)but
0
−
1
→
0^{-1}\to
0−1→undefined
Matrix invers
If A is an
m
×
m
m\times m
m×m matrix(square matrix{has the same row &column}),and if it has an inverse.
→
A
A
−
1
=
A
−
1
A
=
I
\to AA^{-1}=A^{-1}A=I
→AA−1=A−1A=I
\quad
A
逆
矩
阵
A
−
1
A逆矩阵A^{-1}
A逆矩阵A−1
\quad
A
=
[
0
0
0
0
]
无
逆
矩
阵
A=\begin{bmatrix} {0}&0\\ 0&0\\ \end{bmatrix}无逆矩阵
A=[0000]无逆矩阵
E
.
g
.
[
3
4
2
16
]
[
0.4
−
0.1
−
0.05
0.75
]
=
[
1
0
0
1
]
=
I
2
×
2
E.g.\begin{bmatrix} 3&4\\ 2&16\\ \end{bmatrix}\begin{bmatrix} 0.4&{-0.1}\\ {-0.05}&0.75\\ \end{bmatrix}=\begin{bmatrix} 1&0\\ 0&1\\ \end{bmatrix}=I_{2\times 2}
E.g.[32416][0.4−0.05−0.10.75]=[1001]=I2×2
the way to caculate
caculate the inverse matrix
Octave
A=[3 4;2 16]
pinv(A)
Matlab
Matrices that don’t have an inverse are “singular” or “degenerate”
Matrix Transpose
example:
A
=
[
1
2
0
3
5
9
]
A=\begin{bmatrix} 1&2&0\\ 3&5&9\\ \end{bmatrix}
A=[132509]
A
T
=
[
1
3
2
5
0
9
]
\quad A^T=\begin{bmatrix} 1&3\\ 2&5\\ 0&9 \end{bmatrix}
AT=⎣⎡120359⎦⎤
r
o
w
→
c
o
l
u
m
n
\quad row \to column
row→column
Let A be a
m
×
n
m\times n
m×n matrix,and let
B
=
A
T
B=A^T
B=AT
Then B is a
n
×
m
n\times m
n×m matrix, and
B
i
j
=
A
j
i
B_{ij}=A_{ji}
Bij=Aji
B
21
=
A
12
=
2
B_{21}=A_{12}=2
B21=A12=2
B
32
=
A
23
=
9
B_{32}=A_{23}=9
B32=A23=9
the end
有相关配套程序请点击这里