目录
一、本文介绍
这篇文章给大家带来的是发表于2022年的ODConv(Omni-Dimensional Dynamic Convolution)中文名字全维度动态卷积,该卷积可以即插即用,可以直接替换网络结构中的任何一个卷积模块,在本文的末尾提供可以直接替换卷积模块的ODConv,添加ODConv模块的C2f和Bottleneck(配合教程将代码复制粘贴到你自己的代码中即可运行)给大家,该卷积模块主要具有更小的计算量和更高的精度,其中添加ODConv模块的网络(只替换了一处C2f中的卷积)参数量由8.9GFLOPS减小到8.8GFLOPS,精度也有提高->下面的图片是精度的对比(因为训练成本我只是用了相同的数据集100张图片除了修改了ODConv以后其他配置都相同下面是效果对比图左面为修改版本,右面为基础版本)