LRU算法:
#include<iostream>
#include<map>
using namespace std;
/**
* Definition of cachelist node, it's double linked list node.
*/
struct CacheNode {
int key;
int value;
CacheNode *pre, *next;
CacheNode(int k, int v) : key(k), value(v), pre(NULL), next(NULL) {}
};
class LRUCache{
private:
int size; // Maximum of cachelist size.
CacheNode *head, *tail;
map<int, CacheNode *> mp; // Use hashmap to store
public:
LRUCache(int capacity)
{
size = capacity;
head = NULL;
tail = NULL;
}
int get(int key)
{
map<int, CacheNode *>::iterator it = mp.find(key);
if (it != mp.end())
{
CacheNode *node = it -> second;
remove(node);
setHead(node);
return node -> value;
}
else
{
return -1;
}
}
void set(int key, int value)
{
map<int, CacheNode *>::iterator it = mp.find(key);
if (it != mp.end())
{
CacheNode *node = it -> second;
node -> value = value;
remove(node);
setHead(node);
}
else
{
CacheNode *newNode = new CacheNode(key, value);
if (mp.size() >= size)
{
map<int, CacheNode *>::iterator iter = mp.find(tail -> key);
remove(tail);
mp.erase(iter);
}
setHead(newNode);
mp[key] = newNode;
}
}
void remove(CacheNode *node)
{
if (node -> pre != NULL)
{
node -> pre -> next = node -> next;
}
else
{
head = node -> next;
}
if (node -> next != NULL)
{
node -> next -> pre = node -> pre;
}
else
{
tail = node -> pre;
}
}
void setHead(CacheNode *node)
{
node -> next = head;
node -> pre = NULL;
if (head != NULL)
{
head -> pre = node;
}
head = node;
if (tail == NULL)
{
tail = head;
}
}
};
int main(int argc, char **argv)
{
LRUCache *lruCache = new LRUCache(2);
lruCache -> set(2, 1);
lruCache -> set(1, 1);
cout << lruCache -> get(2) << endl;
lruCache -> set(4, 1);
cout << lruCache -> get(1) << endl;
cout << lruCache -> get(2) << endl;
}
力扣
请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现 LRUCache
类:
LRUCache(int capacity)
以 正整数 作为容量capacity
初始化 LRU 缓存int get(int key)
如果关键字key
存在于缓存中,则返回关键字的值,否则返回-1
。void put(int key, int value)
如果关键字key
已经存在,则变更其数据值value
;如果不存在,则向缓存中插入该组key-value
。如果插入操作导致关键字数量超过capacity
,则应该 逐出 最久未使用的关键字。
函数 get
和 put
必须以 O(1)
的平均时间复杂度运行。
示例:
输入 ["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"] [[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]] 输出 [null, null, null, 1, null, -1, null, -1, 3, 4] 解释 LRUCache lRUCache = new LRUCache(2); lRUCache.put(1, 1); // 缓存是 {1=1} lRUCache.put(2, 2); // 缓存是 {1=1, 2=2} lRUCache.get(1); // 返回 1 lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3} lRUCache.get(2); // 返回 -1 (未找到) lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3} lRUCache.get(1); // 返回 -1 (未找到) lRUCache.get(3); // 返回 3 lRUCache.get(4); // 返回 4
struct DLinkedNode{
int key,value;
DLinkedNode* prev;
DLinkedNode* next;
DLinkedNode():key(0),value(0),prev(nullptr),next(nullptr){}
DLinkedNode(int _key,int _value):key(_key),value(_value),prev(nullptr),next(nullptr){}
};
class LRUCache {
public:
LRUCache(int _capacity) {
size=0;
capacity=_capacity;
head = new DLinkedNode();
tail = new DLinkedNode();
head->next=tail;
tail->prev=head;
}
int get(int key) {
if(!mp.count(key)){
return -1;
}
DLinkedNode* node=mp[key];
moveTohead(node);
return node->value;
}
void put(int key, int value) {
if(!mp.count(key)){
DLinkedNode* node=new DLinkedNode(key,value);
mp[key]=node;
addToHead(node);
++size;
if(size>capacity){
DLinkedNode* removed=removeTail();
mp.erase(removed->key);
delete removed;
--size;
}
}
else{
DLinkedNode* node=mp[key];
node->value=value;
moveTohead(node);
}
}
void addToHead(DLinkedNode* node){
node->prev=head;
node->next=head->next;
head->next->prev=node;
head->next=node;
}
void removeNode(DLinkedNode* node){
node->prev->next=node->next;
node->next->prev=node->prev;
}
void moveTohead(DLinkedNode* node){
removeNode(node);
addToHead(node);
}
DLinkedNode* removeTail(){
DLinkedNode* node=tail->prev;
removeNode(node);
return node;
}
private:
unordered_map<int,DLinkedNode*> mp;
int size;
DLinkedNode* head;
DLinkedNode* tail;
int capacity;
};
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache* obj = new LRUCache(capacity);
* int param_1 = obj->get(key);
* obj->put(key,value);
*/