1 填充
在上一节中,我们的卷积步骤如下:
可以发现输入是 3 × 3 3\times3 3×3,输出是 2 × 2 2\times2 2×2,这样可能会导致原始图像的边界丢失了许多有用信息,如果应用多层卷积核,累积丢失的像素就更多了,为了解决这个问题,可以采用填充方法
填充(padding):在输入图像的边界填充元素(通常填充元素是0)
例如我们对下面的输入图像进行填充,形状由 3 × 3 3\times3 3×3变为 5 × 5 5\times5 5×5,这样它的输入会变成 4 × 4 4\times4 4×4:
通常,如果我们添加 p h p_{h} ph 行填充(大约一半在顶部,一半在底部)和 p h p_{h} ph 列填充(左侧大约一半,右侧一半),则输出形状将为:
( n h − k h + p h + 1 ) × ( n w − k w + p w + 1 ) 。 (n_h-k_h+p_h+1)\times(n_w-k_w+p_w+1)。 (nh−kh+ph+1)×(nw−kw+