本节是Gilbert Strang的MIT线性代数公开课中【第一讲 线性方程的几何表示(lecture 1 The geometry of linear equations)】的笔记,参考他在 MIT Linear Algebra课程网站上公开分享的 lecture summary (PDF) & Lecture video transcript (PDF)等文档,整理笔记如下,笔记中的大部分内容是从 MIT Linear Algebra课程网站上的资料中直接粘贴过来的,本人只是将该课程视频中讲述的内容整理为文字形式,后面的章节会按照视频顺序不断更新~
文章目录
lecture 1 The geometry of linear equations
The geometry of linear equations
The fundamental problem of linear algebra, which is to solve a system of linear equations(线性方程组)。从 n n n个方程, n n n 个未知数个数讲起,In this first lecture on linear algebra we view this problem in three ways.
1) Row picture:the picture of one equation at a time (矩阵的行)
2)Column picture (矩阵的列)
3)Matrix form
For example: 二维
2 x − y = 0 − x + 2 y = 3 2x-y=0 \\ -x+2y=3 2x−y=0−x+2y=3
1)Matrix form:
[ 2 − 1 − 1 2 ] [ x y ] = [ 0 3 ] \left[ \begin{matrix} 2& -1\\ -1& 2 \end{matrix} \right ] \left[ \begin{matrix} x\\ y\\ \end{matrix} \right ] =\left[ \begin{matrix} 0\\ 3 \end{matrix} \right ] [2−1−12][xy]=[03]
系数矩阵: A = [ 2 − 1 − 1 2 ] A= \left[ \begin{matrix} 2& -1\\ -1& 2 \end{matrix} \right ] A=[2−1−12],
未知数矢量: X = [ x y ] X=\left[\begin{matrix} x \\ y \end{matrix}\right ] X=[xy] , b = [ 0 3 ] b=\left[\begin{matrix} 0 \\ 3 \end{matrix} \right ] b=[03] , 则线性方程组为 A X = b AX=b AX=b.
2) Row picture:
一次取一行,作图与xy平面,Plot the points that satisfy each equation,即分别为满足 2 x − y = 0 2x-y=0 2x−y=0和 − x + 2 y = 3 -x+2y=3 −<