The geometry of linear equations

The geometry of linear equations

 

 

  • Row Picture:

  • Column picture:

 

 

Here's one possible solution in Java: ```java import java.util.Scanner; public class IntersectingPoint { public static void main(String[] args) { // Prompt the user to enter the four endpoints Scanner input = new Scanner(System.in); System.out.print("Enter x1, y1, x2, y2, x3, y3, x4, y4: "); double x1 = input.nextDouble(); double y1 = input.nextDouble(); double x2 = input.nextDouble(); double y2 = input.nextDouble(); double x3 = input.nextDouble(); double y3 = input.nextDouble(); double x4 = input.nextDouble(); double y4 = input.nextDouble(); // Create two LinearEquation objects for the two line segments LinearEquation eq1 = new LinearEquation(y1 - y2, x2 - x1, y1*x2 - y2*x1); LinearEquation eq2 = new LinearEquation(y3 - y4, x4 - x3, y3*x4 - y4*x3); // Check if the two lines are parallel if (eq1.isParallel(eq2)) { System.out.println("The two lines are parallel"); } else { // Compute the intersecting point double x = eq1.getX(eq2); double y = eq1.getY(eq2); System.out.printf("The intersecting point is (%.2f, %.2f)\n", x, y); } } } class LinearEquation { private double a, b, c; public LinearEquation(double a, double b, double c) { this.a = a; this.b = b; this.c = c; } public double getA() { return a; } public double getB() { return b; } public double getC() { return c; } public boolean isParallel(LinearEquation other) { return Math.abs(a * other.b - b * other.a) < 1e-6; } public double getX(LinearEquation other) { return (c * other.b - b * other.c) / (a * other.b - b * other.a); } public double getY(LinearEquation other) { return (a * other.c - c * other.a) / (a * other.b - b * other.a); } } ``` The program first prompts the user to enter the four endpoints, then creates two `LinearEquation` objects for the two line segments, and finally checks if the two lines are parallel or computes the intersecting point using the `getX` and `getY` methods of the `LinearEquation` class. The `isParallel` method checks if the two lines are parallel by comparing the slopes of the two lines, and the `getX` and `getY` methods solve the system of two linear equations for the intersecting point.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值