定理2.5
简单随机样本的协方差
S y x = 1 n − 1 ∑ i = 1 n ( y i − y ˉ ) ( x i − x ˉ ) S_{yx}=\frac{1}{n-1}\displaystyle\sum^{n}_{i=1}{(y_i-\bar{y})(x_i-\bar{x})} Syx=n−11i=1∑n(yi−yˉ)(xi−xˉ)
是总体协方差 S y x S_{yx} Syx的无偏估计
证明:
对于总体中每个单元
Y
i
Y_i
Yi,引入示性变量
a
i
a_i
ai
a
i
=
{
1
若
Y
i
入样
0
若
Y
i
不入样
a_i= \begin{cases} 1 &\text{若}Y_i\text{入样}\\ 0 &\text{若}Y_i\text{不入样} \end{cases}
ai={10若Yi入样若Yi不入样
由引理2.2可知:
∑
i
=
1
N
a
i
Y
i
=
∑
i
=
1
n
y
i
,
E
(
a
i
)
=
n
N
,
E
(
a
i
2
)
=
n
N
,
E
(
a
i
a
j
)
=
n
(
n
−
1
)
N
(
N
−
1
)
\displaystyle\sum^{N}_{i=1}{a_iY_i}=\displaystyle\sum^{n}_{i=1}{y_i},\quad E(a_i)=\frac{n}{N},\quad E(a_i^2)=\frac{n}{N},\quad E(a_ia_j)=\frac{n(n-1)}{N(N-1)}
i=1∑NaiYi=i=1∑nyi,E(ai)=Nn,E(ai2)=Nn,E(aiaj)=N(N−1)n(n−1)
E
(
s
y
x
)
=
E
(
1
n
−
1
∑
i
=
1
n
(
x
i
−
x
ˉ
)
(
y
i
−
y
ˉ
)
)
=
1
n
−
1
E
(
∑
i
=
1
n
(
x
i
y
i
−
x
ˉ
y
i
−
y
ˉ
x
i
+
x
ˉ
y
ˉ
)
)
=
1
n
−
1
E
(
∑
i
=
1
n
x
i
y
i
−
x
ˉ
∑
i
=
1
n
y
i
−
y
ˉ
∑
i
=
1
n
x
i
+
∑
i
=
1
n
x
ˉ
y
ˉ
)
=
1
n
−
1
E
(
∑
i
=
1
n
x
i
y
i
−
n
x
ˉ
y
ˉ
−
n
x
ˉ
y
ˉ
+
2
n
x
ˉ
y
ˉ
)
=
1
n
−
1
E
(
∑
i
=
1
n
x
i
y
i
−
n
x
ˉ
y
ˉ
)
=
1
n
−
1
E
[
∑
i
=
1
N
X
i
Y
i
a
i
2
−
n
(
1
n
∑
i
=
1
n
x
i
)
(
1
n
∑
i
=
1
n
y
i
)
]
=
1
n
−
1
E
(
∑
i
=
1
N
X
i
Y
i
a
i
2
−
1
n
∑
i
=
1
n
x
i
∑
i
=
1
n
y
i
)
=
1
n
−
1
[
∑
i
=
1
N
X
i
Y
i
a
i
2
−
1
n
(
∑
i
=
1
n
x
i
y
i
+
∑
i
≠
j
n
x
i
y
i
)
]
=
1
n
−
1
[
∑
i
=
1
N
X
i
Y
i
a
i
2
−
1
n
(
∑
i
=
1
N
X
i
Y
i
a
i
2
+
∑
i
≠
j
N
X
i
Y
i
a
i
a
j
)
]
=
1
n
−
1
(
E
(
a
i
2
)
∑
i
=
1
N
X
i
Y
i
−
1
n
E
(
a
i
2
)
∑
i
=
1
N
X
i
Y
i
−
1
n
E
(
a
i
a
j
)
∑
i
≠
j
n
X
i
Y
i
)
=
1
n
−
1
(
n
N
∑
i
=
1
N
X
i
Y
i
−
1
N
∑
i
=
1
N
X
i
Y
i
−
n
−
1
N
(
N
−
1
)
∑
i
≠
j
n
X
i
Y
i
)
=
1
n
−
1
[
n
−
1
N
∑
i
=
1
N
X
i
Y
i
−
n
−
1
N
(
N
−
1
)
(
∑
i
=
1
N
X
i
∑
i
=
1
N
Y
i
−
∑
i
=
1
N
X
i
Y
i
)
]
=
1
n
−
1
[
(
n
−
1
N
+
n
−
1
N
(
N
−
1
)
)
∑
i
=
1
N
X
i
Y
i
−
n
−
1
N
(
N
−
1
)
∑
i
=
1
N
X
i
∑
i
=
1
N
Y
i
]
=
1
n
−
1
(
n
−
1
N
−
1
∑
i
=
1
N
X
i
Y
i
−
n
−
1
N
(
N
−
1
)
N
X
ˉ
⋅
N
Y
ˉ
)
=
1
N
−
1
(
∑
i
=
1
N
X
i
Y
i
−
N
X
ˉ
Y
ˉ
)
=
1
N
−
1
∑
i
=
1
N
(
X
i
−
X
ˉ
)
(
Y
i
−
Y
ˉ
)
=
S
y
x
\begin{aligned} E(s_{yx})&=E\left(\frac{1}{n-1}\displaystyle\sum^{n}_{i=1}{(x_i-\bar{x})(y_i-\bar{y})}\right)\\ &=\frac{1}{n-1}E\left(\sum^{n}_{i=1}{(x_iy_i-\bar{x}y_i-\bar{y}x_i+\bar{x}\bar{y})}\right)\\ &=\frac{1}{n-1}E\left(\sum^{n}_{i=1}{x_iy_i}-\bar{x}\sum^{n}_{i=1}{y_i}-\bar{y}\sum^{n}_{i=1}{x_i}+\sum^{n}_{i=1}{\bar{x}\bar{y}}\right)\\ &=\frac{1}{n-1}E\left(\sum^{n}_{i=1}{x_iy_i}-n\bar{x}\bar{y}-n\bar{x}\bar{y}+2n\bar{x}\bar{y}\right)\\ &=\frac{1}{n-1}E\left(\sum^{n}_{i=1}{x_iy_i}-n\bar{x}\bar{y}\right)\\ &=\frac{1}{n-1}E\left[\sum^{N}_{i=1}{X_iY_ia_i^2}-n\left(\frac{1}{n}\sum^{n}_{i=1}{x_i}\right)\left(\frac{1}{n}\sum^{n}_{i=1}{y_i}\right)\right]\\ &=\frac{1}{n-1}E\left(\sum^{N}_{i=1}{X_iY_ia_i^2}-\frac{1}{n}\sum^{n}_{i=1}{x_i}\sum^{n}_{i=1}{y_i}\right)\\ &=\frac{1}{n-1}\left[\sum^{N}_{i=1}{X_iY_ia_i^2}-\frac{1}{n}\left(\sum^{n}_{i=1}{x_iy_i}+\sum^{n}_{i\neq j}{x_iy_i}\right)\right]\\ &=\frac{1}{n-1}\left[\sum^{N}_{i=1}{X_iY_ia_i^2}-\frac{1}{n}\left(\sum^{N}_{i=1}{X_iY_ia_i^2}+\sum^{N}_{i\neq j}{X_iY_ia_ia_j}\right)\right]\\ &=\frac{1}{n-1}\left(E(a_i^2)\sum^{N}_{i=1}{X_iY_i}-\frac{1}{n}E(a_i^2)\sum^{N}_{i=1}{X_iY_i}-\frac{1}{n}E(a_ia_j)\sum^{n}_{i\neq j}{X_iY_i}\right)\\ &=\frac{1}{n-1}\left(\frac{n}{N}\sum^{N}_{i=1}{X_iY_i}-\frac{1}{N}\sum^{N}_{i=1}{X_iY_i}-\frac{n-1}{N(N-1)}\sum^{n}_{i\neq j}{X_iY_i}\right)\\ &=\frac{1}{n-1}\left[\frac{n-1}{N}\sum^{N}_{i=1}{X_iY_i}-\frac{n-1}{N(N-1)}\left(\sum^{N}_{i=1}{X_i}\sum^{N}_{i=1}{Y_i}-\sum^{N}_{i=1}{X_iY_i}\right)\right]\\ &=\frac{1}{n-1}\left[\left(\frac{n-1}{N}+\frac{n-1}{N(N-1)}\right)\sum^{N}_{i=1}{X_iY_i}-\frac{n-1}{N(N-1)}\sum^{N}_{i=1}X_i\sum^{N}_{i=1}{Y_i}\right]\\ &=\frac{1}{n-1}\left(\frac{n-1}{N-1}\sum^{N}_{i=1}{X_iY_i}-\frac{n-1}{N(N-1)}N\bar{X}·N\bar{Y}\right)\\ &=\frac{1}{N-1}\left(\sum^{N}_{i=1}{X_iY_i}-N\bar{X}\bar{Y}\right)\\ &=\frac{1}{N-1}\sum^{N}_{i=1}{(X_i-\bar{X})(Y_i-\bar{Y})}\\ &=S_{yx}\\ \end{aligned}
E(syx)=E(n−11i=1∑n(xi−xˉ)(yi−yˉ))=n−11E(i=1∑n(xiyi−xˉyi−yˉxi+xˉyˉ))=n−11E(i=1∑nxiyi−xˉi=1∑nyi−yˉi=1∑nxi+i=1∑nxˉyˉ)=n−11E(i=1∑nxiyi−nxˉyˉ−nxˉyˉ+2nxˉyˉ)=n−11E(i=1∑nxiyi−nxˉyˉ)=n−11E[i=1∑NXiYiai2−n(n1i=1∑nxi)(n1i=1∑nyi)]=n−11E(i=1∑NXiYiai2−n1i=1∑nxii=1∑nyi)=n−11⎣⎡i=1∑NXiYiai2−n1⎝⎛i=1∑nxiyi+i=j∑nxiyi⎠⎞⎦⎤=n−11⎣⎡i=1∑NXiYiai2−n1⎝⎛i=1∑NXiYiai2+i=j∑NXiYiaiaj⎠⎞⎦⎤=n−11⎝⎛E(ai2)i=1∑NXiYi−n1E(ai2)i=1∑NXiYi−n1E(aiaj)i=j∑nXiYi⎠⎞=n−11⎝⎛Nni=1∑NXiYi−N1i=1∑NXiYi−N(N−1)n−1i=j∑nXiYi⎠⎞=n−11[Nn−1i=1∑NXiYi−N(N−1)n−1(i=1∑NXii=1∑NYi−i=1∑NXiYi)]=n−11[(Nn−1+N(N−1)n−1)i=1∑NXiYi−N(N−1)n−1i=1∑NXii=1∑NYi]=n−11(N−1n−1i=1∑NXiYi−N(N−1)n−1NXˉ⋅NYˉ)=N−11(i=1∑NXiYi−NXˉYˉ)=N−11i=1∑N(Xi−Xˉ)(Yi−Yˉ)=Syx