定理2.5

定理2.5

简单随机样本的协方差

S y x = 1 n − 1 ∑ i = 1 n ( y i − y ˉ ) ( x i − x ˉ ) S_{yx}=\frac{1}{n-1}\displaystyle\sum^{n}_{i=1}{(y_i-\bar{y})(x_i-\bar{x})} Syx=n11i=1n(yiyˉ)(xixˉ)

是总体协方差 S y x S_{yx} Syx的无偏估计

证明:

对于总体中每个单元 Y i Y_i Yi,引入示性变量 a i a_i ai
a i = { 1 若 Y i 入样 0 若 Y i 不入样 a_i= \begin{cases} 1 &\text{若}Y_i\text{入样}\\ 0 &\text{若}Y_i\text{不入样} \end{cases} ai={10Yi入样Yi不入样
由引理2.2可知: ∑ i = 1 N a i Y i = ∑ i = 1 n y i , E ( a i ) = n N , E ( a i 2 ) = n N , E ( a i a j ) = n ( n − 1 ) N ( N − 1 ) \displaystyle\sum^{N}_{i=1}{a_iY_i}=\displaystyle\sum^{n}_{i=1}{y_i},\quad E(a_i)=\frac{n}{N},\quad E(a_i^2)=\frac{n}{N},\quad E(a_ia_j)=\frac{n(n-1)}{N(N-1)} i=1NaiYi=i=1nyi,E(ai)=Nn,E(ai2)=Nn,E(aiaj)=N(N1)n(n1)
E ( s y x ) = E ( 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) ( y i − y ˉ ) ) = 1 n − 1 E ( ∑ i = 1 n ( x i y i − x ˉ y i − y ˉ x i + x ˉ y ˉ ) ) = 1 n − 1 E ( ∑ i = 1 n x i y i − x ˉ ∑ i = 1 n y i − y ˉ ∑ i = 1 n x i + ∑ i = 1 n x ˉ y ˉ ) = 1 n − 1 E ( ∑ i = 1 n x i y i − n x ˉ y ˉ − n x ˉ y ˉ + 2 n x ˉ y ˉ ) = 1 n − 1 E ( ∑ i = 1 n x i y i − n x ˉ y ˉ ) = 1 n − 1 E [ ∑ i = 1 N X i Y i a i 2 − n ( 1 n ∑ i = 1 n x i ) ( 1 n ∑ i = 1 n y i ) ] = 1 n − 1 E ( ∑ i = 1 N X i Y i a i 2 − 1 n ∑ i = 1 n x i ∑ i = 1 n y i ) = 1 n − 1 [ ∑ i = 1 N X i Y i a i 2 − 1 n ( ∑ i = 1 n x i y i + ∑ i ≠ j n x i y i ) ] = 1 n − 1 [ ∑ i = 1 N X i Y i a i 2 − 1 n ( ∑ i = 1 N X i Y i a i 2 + ∑ i ≠ j N X i Y i a i a j ) ] = 1 n − 1 ( E ( a i 2 ) ∑ i = 1 N X i Y i − 1 n E ( a i 2 ) ∑ i = 1 N X i Y i − 1 n E ( a i a j ) ∑ i ≠ j n X i Y i ) = 1 n − 1 ( n N ∑ i = 1 N X i Y i − 1 N ∑ i = 1 N X i Y i − n − 1 N ( N − 1 ) ∑ i ≠ j n X i Y i ) = 1 n − 1 [ n − 1 N ∑ i = 1 N X i Y i − n − 1 N ( N − 1 ) ( ∑ i = 1 N X i ∑ i = 1 N Y i − ∑ i = 1 N X i Y i ) ] = 1 n − 1 [ ( n − 1 N + n − 1 N ( N − 1 ) ) ∑ i = 1 N X i Y i − n − 1 N ( N − 1 ) ∑ i = 1 N X i ∑ i = 1 N Y i ] = 1 n − 1 ( n − 1 N − 1 ∑ i = 1 N X i Y i − n − 1 N ( N − 1 ) N X ˉ ⋅ N Y ˉ ) = 1 N − 1 ( ∑ i = 1 N X i Y i − N X ˉ Y ˉ ) = 1 N − 1 ∑ i = 1 N ( X i − X ˉ ) ( Y i − Y ˉ ) = S y x \begin{aligned} E(s_{yx})&=E\left(\frac{1}{n-1}\displaystyle\sum^{n}_{i=1}{(x_i-\bar{x})(y_i-\bar{y})}\right)\\ &=\frac{1}{n-1}E\left(\sum^{n}_{i=1}{(x_iy_i-\bar{x}y_i-\bar{y}x_i+\bar{x}\bar{y})}\right)\\ &=\frac{1}{n-1}E\left(\sum^{n}_{i=1}{x_iy_i}-\bar{x}\sum^{n}_{i=1}{y_i}-\bar{y}\sum^{n}_{i=1}{x_i}+\sum^{n}_{i=1}{\bar{x}\bar{y}}\right)\\ &=\frac{1}{n-1}E\left(\sum^{n}_{i=1}{x_iy_i}-n\bar{x}\bar{y}-n\bar{x}\bar{y}+2n\bar{x}\bar{y}\right)\\ &=\frac{1}{n-1}E\left(\sum^{n}_{i=1}{x_iy_i}-n\bar{x}\bar{y}\right)\\ &=\frac{1}{n-1}E\left[\sum^{N}_{i=1}{X_iY_ia_i^2}-n\left(\frac{1}{n}\sum^{n}_{i=1}{x_i}\right)\left(\frac{1}{n}\sum^{n}_{i=1}{y_i}\right)\right]\\ &=\frac{1}{n-1}E\left(\sum^{N}_{i=1}{X_iY_ia_i^2}-\frac{1}{n}\sum^{n}_{i=1}{x_i}\sum^{n}_{i=1}{y_i}\right)\\ &=\frac{1}{n-1}\left[\sum^{N}_{i=1}{X_iY_ia_i^2}-\frac{1}{n}\left(\sum^{n}_{i=1}{x_iy_i}+\sum^{n}_{i\neq j}{x_iy_i}\right)\right]\\ &=\frac{1}{n-1}\left[\sum^{N}_{i=1}{X_iY_ia_i^2}-\frac{1}{n}\left(\sum^{N}_{i=1}{X_iY_ia_i^2}+\sum^{N}_{i\neq j}{X_iY_ia_ia_j}\right)\right]\\ &=\frac{1}{n-1}\left(E(a_i^2)\sum^{N}_{i=1}{X_iY_i}-\frac{1}{n}E(a_i^2)\sum^{N}_{i=1}{X_iY_i}-\frac{1}{n}E(a_ia_j)\sum^{n}_{i\neq j}{X_iY_i}\right)\\ &=\frac{1}{n-1}\left(\frac{n}{N}\sum^{N}_{i=1}{X_iY_i}-\frac{1}{N}\sum^{N}_{i=1}{X_iY_i}-\frac{n-1}{N(N-1)}\sum^{n}_{i\neq j}{X_iY_i}\right)\\ &=\frac{1}{n-1}\left[\frac{n-1}{N}\sum^{N}_{i=1}{X_iY_i}-\frac{n-1}{N(N-1)}\left(\sum^{N}_{i=1}{X_i}\sum^{N}_{i=1}{Y_i}-\sum^{N}_{i=1}{X_iY_i}\right)\right]\\ &=\frac{1}{n-1}\left[\left(\frac{n-1}{N}+\frac{n-1}{N(N-1)}\right)\sum^{N}_{i=1}{X_iY_i}-\frac{n-1}{N(N-1)}\sum^{N}_{i=1}X_i\sum^{N}_{i=1}{Y_i}\right]\\ &=\frac{1}{n-1}\left(\frac{n-1}{N-1}\sum^{N}_{i=1}{X_iY_i}-\frac{n-1}{N(N-1)}N\bar{X}·N\bar{Y}\right)\\ &=\frac{1}{N-1}\left(\sum^{N}_{i=1}{X_iY_i}-N\bar{X}\bar{Y}\right)\\ &=\frac{1}{N-1}\sum^{N}_{i=1}{(X_i-\bar{X})(Y_i-\bar{Y})}\\ &=S_{yx}\\ \end{aligned} E(syx)=E(n11i=1n(xixˉ)(yiyˉ))=n11E(i=1n(xiyixˉyiyˉxi+xˉyˉ))=n11E(i=1nxiyixˉi=1nyiyˉi=1nxi+i=1nxˉyˉ)=n11E(i=1nxiyinxˉyˉnxˉyˉ+2nxˉyˉ)=n11E(i=1nxiyinxˉyˉ)=n11E[i=1NXiYiai2n(n1i=1nxi)(n1i=1nyi)]=n11E(i=1NXiYiai2n1i=1nxii=1nyi)=n11i=1NXiYiai2n1i=1nxiyi+i=jnxiyi=n11i=1NXiYiai2n1i=1NXiYiai2+i=jNXiYiaiaj=n11E(ai2)i=1NXiYin1E(ai2)i=1NXiYin1E(aiaj)i=jnXiYi=n11Nni=1NXiYiN1i=1NXiYiN(N1)n1i=jnXiYi=n11[Nn1i=1NXiYiN(N1)n1(i=1NXii=1NYii=1NXiYi)]=n11[(Nn1+N(N1)n1)i=1NXiYiN(N1)n1i=1NXii=1NYi]=n11(N1n1i=1NXiYiN(N1)n1NXˉNYˉ)=N11(i=1NXiYiNXˉYˉ)=N11i=1N(XiXˉ)(YiYˉ)=Syx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值