定理2.2

定理2.2

对于简单随机抽样, y ˉ \bar{y} yˉ 的方差

V ( y ˉ ) = 1 − f N S 2 V(\bar{y})=\frac{1-f}{N}S^2 V(yˉ)=N1fS2

证明:

对于总体中每个单元 Y i Y_i Yi,引入示性变量 a i a_i ai
a i = { 1 若 Y i 入样 0 若 Y i 不入样 a_i= \begin{cases} 1 &\text{若}Y_i\text{入样}\\ 0 &\text{若}Y_i\text{不入样} \end{cases} ai={10Yi入样Yi不入样
y ˉ = 1 n ∑ i = 1 N a i Y i \bar{y}=\frac{1}{n}\displaystyle\sum^{N}_{i=1}{a_iY_i} yˉ=n1i=1NaiYi

这里证明时需要使用方差的性质,已知两个随机变量和的方差 V ( X ± Y ) = V ( X ) + V ( Y ) ± 2 C o v ( X , Y ) V(X±Y)=V(X)+V(Y)±2Cov(X,Y) V(X±Y)=V(X)+V(Y)±2Cov(X,Y)

下面将其扩展到三个随机变量和的方差
V ( X 1 + X 2 + X 3 ) = V ( X 1 ) + V ( X 2 + X 3 ) + 2 C o v ( X 1 , ( X 2 + X 3 ) ) = V ( X 1 ) + V ( X 2 + X 3 ) + 2 E ( X 1 ( X 2 + X 3 ) ) − 2 E ( X 1 ) E ( X 2 + X 3 ) = V ( X 1 ) + V ( X 2 + X 3 ) + 2 E ( X 1 X 2 ) + 2 E ( X 1 X 3 ) − 2 E ( X 1 ) E ( X 2 ) − 2 E ( X 1 ) E ( X 3 ) = V ( X 1 ) + V ( X 2 ) + V ( X 3 ) + 2 C o v ( X 1 , X 2 ) + 2 C o v ( X 1 , X 3 ) + 2 C o v ( X 2 , X 3 ) \begin{aligned} V(X_1+X_2+X_3)&=V(X_1)+V(X_2+X_3)+2Cov(X_1,(X_2+X_3))\\ &=V(X_1)+V(X_2+X_3)+2E(X_1(X_2+X_3))-2E(X_1)E(X_2+X_3)\\ &=V(X_1)+V(X_2+X_3)+2E(X_1X_2)+2E(X_1X_3)-2E(X_1)E(X_2)-2E(X_1)E(X_3)\\ &=V(X_1)+V(X_2)+V(X_3)+2Cov(X_1,X_2)+2Cov(X_1,X_3)+2Cov(X_2,X_3) \end{aligned} V(X1+X2+X3)=V(X1)+V(X2+X3)+2Cov(X1,(X2+X3))=V(X1)+V(X2+X3)+2E(X1(X2+X3))2E(X1)E(X2+X3)=V(X1)+V(X2+X3)+2E(X1X2)+2E(X1X3)2E(X1)E(X2)2E(X1)E(X3)=V(X1)+V(X2)+V(X3)+2Cov(X1,X2)+2Cov(X1,X3)+2Cov(X2,X3)
将其推广到 n n n个随机变量和的方差
V ( ∑ i = 1 n X i ) = ∑ i = 1 n V ( X i ) + ∑ i < j n X i , X j V(\displaystyle\sum^{n}_{i=1}{X_i})=\displaystyle\sum^{n}_{i=1}{V(X_i)}+\displaystyle\sum^{n}_{i<j}{X_i,X_j} V(i=1nXi)=i=1nV(Xi)+i<jnXi,Xj
所以有:
V ( y ˉ ) = V ( 1 n ∑ i = 1 N a i Y i ) = 1 n 2 ∑ i = 1 N Y i 2 V ( a i ) + 1 n 2 [ Y 1 Y 2 C o v ( Y 1 Y 2 ) + Y 1 Y 3 C o v ( Y 1 Y 3 ) + … + Y N − 1 Y N C o v ( Y N − 1 Y N ) ] = 1 n 2 ( ∑ i = 1 N Y i 2 V ( a i ) + 2 ∑ i < j n X i , X j C o v ( Y i Y j ) ) = 1 n 2 ( ∑ i = 1 N Y i 2 n N ( 1 − f ) − 2 ∑ i < j n X i X j n ( 1 − f ) N ( N − 1 ) ) = 1 n 2 ( n ( 1 − f ) N ∑ i = 1 N Y i 2 − 2 n ( 1 − f ) N ( N − 1 ) ∑ i < j n X i X j ) = 1 n 2 ⋅ n ( 1 − f ) N ( ∑ i = 1 N Y i 2 − 2 N − 1 ∑ i < j N Y i Y j ) = 1 − f n N ( N N − 1 ∑ i = 1 N Y i 2 − 1 N − 1 ∑ i = 1 N Y i 2 − 2 N − 1 ∑ i < j N Y i Y j ) = 1 − f n N [ N N − 1 ∑ i = 1 N Y i 2 − 1 N − 1 ( ∑ i = 1 N Y i 2 + 2 ∑ i < j N Y i Y j ) ] = 1 − f n N ⋅ N N − 1 ( ∑ i = 1 N Y i 2 − 1 N ( ∑ i = 1 N Y i 2 ) 2 ) = 1 − f n ( N − 1 ) ( ∑ i = 1 N Y i 2 − N ( 1 N ∑ i = 1 N Y i 2 ) 2 ) = 1 − f n ( N − 1 ) ( ∑ i = 1 N Y i 2 − N Y ˉ 2 ) = 1 − f n ⋅ 1 N − 1 ∑ i = 1 N ( Y i − Y ˉ ) 2 = 1 − f n S 2 \begin{aligned} V(\bar{y})&=V\left(\frac{1}{n}\displaystyle\sum^{N}_{i=1}{a_iY_i}\right)\\ &=\frac{1}{n^2}\displaystyle\sum^{N}_{i=1}{Y_i^2V(a_i)}+\frac{1}{n^2}[Y_1Y_2Cov(Y_1Y_2)+Y_1Y_3Cov(Y_1Y_3)+…+Y_{N-1}Y_NCov(Y_{N-1}Y_N)]\\ &=\frac{1}{n^2}\left(\displaystyle\sum^{N}_{i=1}{Y_i^2V(a_i)}+2\displaystyle\sum^{n}_{i<j}{X_i,X_j}Cov(Y_iY_j)\right)\\ &=\frac{1}{n^2}\left(\displaystyle\sum^{N}_{i=1}{Y_i^2\frac{n}{N}(1-f)}-2\displaystyle\sum^{n}_{i<j}{X_iX_j}\frac{n(1-f)}{N(N-1)}\right)\\ &=\frac{1}{n^2}\left(\frac{n(1-f)}{N}\displaystyle\sum^{N}_{i=1}{Y_i^2}-\frac{2n(1-f)}{N(N-1)}\displaystyle\sum^{n}_{i<j}{X_iX_j}\right)\\ &=\frac{1}{n^2}·\frac{n(1-f)}{N}\left(\displaystyle\sum^{N}_{i=1}{Y_i^2}-\frac{2}{N-1}\displaystyle\sum^{N}_{i<j}{Y_iY_j}\right)\\ &=\frac{1-f}{nN}\left(\frac{N}{N-1}\displaystyle\sum^{N}_{i=1}{Y_i^2}-\frac{1}{N-1}\displaystyle\sum^{N}_{i=1}{Y_i^2}-\frac{2}{N-1}\displaystyle\sum^{N}_{i<j}{Y_iY_j}\right)\\ &=\frac{1-f}{nN}\left[\frac{N}{N-1}\displaystyle\sum^{N}_{i=1}{Y_i^2}-\frac{1}{N-1}\left(\displaystyle\sum^{N}_{i=1}{Y_i^2}+2\displaystyle\sum^{N}_{i<j}{Y_iY_j}\right)\right]\\ &=\frac{1-f}{nN}·\frac{N}{N-1}\left(\displaystyle\sum^{N}_{i=1}{Y_i^2}-\frac{1}{N}\left(\displaystyle\sum^{N}_{i=1}{Y_i^2}\right)^2\right)\\ &=\frac{1-f}{n(N-1)}\left(\displaystyle\sum^{N}_{i=1}{Y_i^2}-N\left(\frac{1}{N}\displaystyle\sum^{N}_{i=1}{Y_i^2}\right)^2\right)\\ &=\frac{1-f}{n(N-1)}\left(\displaystyle\sum^{N}_{i=1}{Y_i^2}-N\bar{Y}^2\right)\\ &=\frac{1-f}{n}·\frac{1}{N-1}\displaystyle\sum^{N}_{i=1}{(Y_i-\bar{Y})^2}\\ &=\frac{1-f}{n}S^2\\ \end{aligned} V(yˉ)=V(n1i=1NaiYi)=n21i=1NYi2V(ai)+n21[Y1Y2Cov(Y1Y2)+Y1Y3Cov(Y1Y3)++YN1YNCov(YN1YN)]=n21(i=1NYi2V(ai)+2i<jnXi,XjCov(YiYj))=n21(i=1NYi2Nn(1f)2i<jnXiXjN(N1)n(1f))=n21(Nn(1f)i=1NYi2N(N1)2n(1f)i<jnXiXj)=n21Nn(1f)(i=1NYi2N12i<jNYiYj)=nN1f(N1Ni=1NYi2N11i=1NYi2N12i<jNYiYj)=nN1f[N1Ni=1NYi2N11(i=1NYi2+2i<jNYiYj)]=nN1fN1Ni=1NYi2N1(i=1NYi2)2=n(N1)1fi=1NYi2N(N1i=1NYi2)2=n(N1)1f(i=1NYi2NYˉ2)=n1fN11i=1N(YiYˉ)2=n1fS2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值