LeetCode112-路径总和

本文探讨了在给定二叉树和目标和的情况下,如何判断是否存在从根节点到叶子节点的路径,使得路径上所有节点值之和等于目标和。通过深度优先搜索(DFS)策略,递归地检查每条可能的路径,直至找到符合条件的路径或遍历完整棵树。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和。

说明: 叶子节点是指没有子节点的节点。

示例:
给定如下二叉树,以及目标和 sum = 22,

              5
             / \
            4   8
           /   / \
          11  13  4
         /  \      \
        7    2      1
返回 true, 因为存在目标和为 22 的根节点到叶子节点的路径 5->4->11->2。

一、思路

遍历整颗二叉树,找出所有路径之和,与目标进行对比

C++代码:

class Solution {
public:
	bool hasPathSum(TreeNode* root, int sum) {
		if (!root)
			return false;
		bool ans = false;
		finPathSum(root, sum, 0, ans);
		return ans;
	}

	void finPathSum(TreeNode* root, int& target, int pre_sum, bool& ans) {
		int sum = root->val + pre_sum;
		if (root->left == NULL && root->right == NULL) {
			if (target == sum)
				ans = true;
			if (ans)
				return;
		}
		if (root->left)
			finPathSum(root->left, target, sum, ans);
		if (root->right)
			finPathSum(root->right, target, sum, ans);
		return;
	}
};

执行效率:
在这里插入图片描述

1. 用户与身体信息管理模块 用户信息管理: 注册登录:支持手机号 / 邮箱注册,密码加密存储,提供第三方快捷登录(模拟) 个人资料:记录基本信息(姓名、年龄、性别、身高、体重、职业) 健康目标:用户设置目标(如 “减重 5kg”“增肌”“维持健康”)及期望周期 身体状态跟踪: 体重记录:定期录入体重数据,生成体重变化曲线(折线图) 身体指标:记录 BMI(自动计算)、体脂率(可选)、基础代谢率(根据身高体重估算) 健康状况:用户可填写特殊情况(如糖尿病、过敏食物、素食偏好),系统据此调整推荐 2. 膳食记录与食物数据库模块 食物数据库: 基础信息:包含常见食物(如米饭、鸡蛋、牛肉)的名称、类别(主食 / 肉类 / 蔬菜等)、每份重量 营养成分:记录每 100g 食物的热量(kcal)、蛋白质、脂肪、碳水化合物、维生素、矿物质含量 数据库维护:管理员可添加新食物、更新营养数据,支持按名称 / 类别检索 膳食记录功能: 快速记录:用户选择食物、输入食用量(克 / 份),系统自动计算摄入的营养成分 餐次分类:按早餐 / 午餐 / 晚餐 / 加餐分类记录,支持上传餐食照片(可选) 批量操作:提供常见套餐模板(如 “三明治 + 牛奶”),一键添加到记录 历史记录:按日期查看过往膳食记录,支持编辑 / 删除错误记录 3. 营养分析模块 每日营养摄入分析: 核心指标计算:统计当日摄入的总热量、蛋白质 / 脂肪 / 碳水化合物占比(按每日推荐量对比) 微量营养素分析:检查维生素(如维生素 C、钙、铁)的摄入是否达标 平衡评估:生成 “营养平衡度” 评分(0-100 分),指出摄入过剩或不足的营养素 趋势分析: 周 / 月营养趋势:用折线图展示近 7 天 / 30 天的热量、三大营养素摄入变化 对比分析:将实际摄入与推荐量对比(如 “蛋白质摄入仅达到推荐量的 70%”) 目标达成率:针对健
### LeetCode Hot 100 路径总和 III Java 解决方案 #### 方法一:暴力递归法 此方法通过遍历每一个节点并尝试找到从该节点出发的所有可能路径,判断这些路径的和是否等于目标值。 ```java class Solution { int pathnumber; public int pathSum(TreeNode root, long sum) { if (root == null) return 0; Sum(root, sum); pathSum(root.left, sum); pathSum(root.right, sum); return pathnumber; } public void Sum(TreeNode root, long sum) { if (root == null) return; sum -= root.val; if (sum == 0) { pathnumber++; } Sum(root.left, sum); Sum(root.right, sum); } } ``` 这种方法虽然简单直观,但在处理大规模数据时效率较低。对于某些极端情况下的输入,可能会导致性能问题[^1]。 #### 方法二:优化后的前缀和加哈希表 为了提高算法效率,可以采用前缀和的概念加上哈希表来记录已经访问过的节点及其累积值。这样可以在一次深度优先搜索过程中完成计算,而不需要重复遍历子树。 ```java import java.util.HashMap; public class Solution { private HashMap<Long, Integer> prefixSumCount = new HashMap<>(); public int pathSum(TreeNode root, int targetSum) { prefixSumCount.put(0L, 1); return findPath(root, 0L, targetSum); } private int findPath(TreeNode node, long currentSum, int targetSum) { if (node == null) return 0; // 更新当前累计和 currentSum += node.val; // 计算满足条件的数量 int numPathsToCurrentNode = prefixSumCount.getOrDefault(currentSum - targetSum, 0); // 将当前累计和加入map中 prefixSumCount.put(currentSum, prefixSumCount.getOrDefault(currentSum, 0) + 1); // 继续向下探索左右子树 int leftResult = findPath(node.left, currentSum, targetSum); int rightResult = findPath(node.right, currentSum, targetSum); // 移除当前结点的影响以便回溯到父级调用者处继续其他分支的查找工作 prefixSumCount.put(currentSum, prefixSumCount.get(currentSum) - 1); return numPathsToCurrentNode + leftResult + rightResult; } } ``` 这种改进的方法不仅提高了时间复杂度至 O(n),而且空间上也更加高效,适用于更广泛的情况[^2]。 #### 数据约束说明 题目规定了二叉树中的节点数量范围以及各节点取值区间: - 二叉树的节点个数的范围是 [0,1000] - `-10^9 <= Node.val <= 10^9` - `-1000 <= targetSum <= 1000` 因此,在实现解决方案时需要注意数值类型的选取以防止溢出等问题的发生[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值