LeetCode 112. 路径总和
1、题目
题目链接:112. 路径总和
给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。
叶子节点 是指没有子节点的节点。
示例 1:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
输出:true
解释:等于目标和的根节点到叶节点路径如上图所示。
示例 2:
输入:root = [1,2,3], targetSum = 5
输出:false
解释:树中存在两条根节点到叶子节点的路径:
(1 --> 2): 和为 3
(1 --> 3): 和为 4
不存在 sum = 5 的根节点到叶子节点的路径。
示例 3:
输入:root = [], targetSum = 0
输出:false
解释:由于树是空的,所以不存在根节点到叶子节点的路径。
提示:
- 树中节点的数目在范围 [0, 5000] 内
- -1000 <= Node.val <= 1000
- -1000 <= targetSum <= 1000
2、深度优先搜索(递归)
思路
观察要求我们完成的函数,我们可以归纳出它的功能:询问是否存在从当前节点 root 到叶子节点的路径,满足其路径和为 targetSum。
假定从根节点到当前节点的值之和为 val,我们可以将这个大问题转化为一个小问题:是否存在从当前节点的子节点到叶子的路径,满足其路径和为 targetSum - val。
不难发现这满足递归的性质,若当前节点就是叶子节点,那么我们直接判断 targetSum 是否等于 val 即可(因为路径和已经确定,就是当前节点的值,我们只需要判断该路径和是否满足条件)。若当前节点不是叶子节点,我们只需要递归地询问它的子节点是否能满足条件即可。
代码
#include <iostream>
using namespace std;
//Definition for a binary tree node.
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode() : val(0), left(nullptr), right(nullptr) {
}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {
}
TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {
}
};
class Solution {
public:
bool traversal(TreeNode* root, int count) {
// 如果当前节点是叶子节点,并且count为0,则返回true
if (root->left == nullptr && root->right == nullptr && count == 0) {
return true;
}
// 如果当前节点是叶子节点,但count不为0,则返回false
if (root->left == nullptr && root->right == nullptr && count != 0) {
return false;
}
// 如果左子节点存在
if (root->left) {
// 将count减去左子节点的值
count -= root->left->val;
// 递归调用traversal函数处理左子树
if (traversal(root->left, count)) {
// 如果左子树返回true,则直接返回true
return true;
}
// 否则,回溯,恢复count的值,继续处理右子树
count += root->left->val;
}
// 如果右子节点存在
if (root->right) {
// 将count减去右子节点的值
count -= root->right->val;
// 递归调用traversal函