关于在DOTS里获得transform.forward

LTW与transform.forward:在Unity中理解局部到世界坐标转换
本文讲解了如何在Unity编程中使用Entities.ForEach和ltw.LocalToWorldltw来实现对象从局部坐标到世界坐标的转换,并重点介绍了ltw.Forward的应用。

只需要在Entities.ForEach里in LocalToWorld ltw

然后ltw.Forward就是transform.forward

 

 

OK,结束

import os import cv2 import json import numpy as np import matplotlib.pyplot as plt from tqdm import tqdm from sklearn.model_selection import train_test_split import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import Dataset, DataLoader from torchvision import transforms import albumentations as A from albumentations.pytorch import ToTensorV2 # 1. 视频帧提取 def extract_video_frames(video_path, output_dir, frame_interval=10): """从视频中提取帧""" os.makedirs(output_dir, exist_ok=True) cap = cv2.VideoCapture(video_path) if not cap.isOpened(): raise IOError(f"无法打开视频: {video_path}") fps = cap.get(cv2.CAP_PROP_FPS) total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) print(f"视频信息: {fps:.1f} FPS, 总帧数: {total_frames}") frame_count = 0 saved_count = 0 while cap.isOpened(): ret, frame = cap.read() if not ret: break if frame_count % frame_interval == 0: filename = os.path.join(output_dir, f"frame_{saved_count:05d}.jpg") cv2.imwrite(filename, frame) saved_count += 1 frame_count += 1 cap.release() print(f"✅ 成功提取 {saved_count} 帧到 {output_dir}") return saved_count # 2. 交互式标注工具 def annotate_points(image_dir, annotation_file): """手动标注黑色小圆点位置(添加返回上一张功能)""" if os.path.exists(annotation_file): with open(annotation_file) as f: annotations = json.load(f) else: annotations = {"images": [], "annotations": []} image_files = sorted([f for f in os.listdir(image_dir) if f.lower().endswith(('.jpg', '.png'))]) cv2.namedWindow("标注工具 - 黑色小圆点", cv2.WINDOW_NORMAL) # 添加当前处理的图片索引 current_idx = 0 while current_idx < len(image_files): img_file = image_files[current_idx] img_path = os.path.join(image_dir, img_file) # 检查是否已标注 img_info = next((img for img in annotations["images"] if img["file_name"] == img_file), None) if img_info: img_id = img_info["id"] # 加载已标注的点 points = [ann["point"] for ann in annotations["annotations"] if ann["image_id"] == img_id] else: points = [] img_info = None img = cv2.imread(img_path) if img is None: print(f"⚠️ 无法读取图像: {img_path}") current_idx += 1 continue img_disp = img.copy() # 显示当前图像信息 info_text = f"图像 {current_idx+1}/{len(image_files)}: {img_file}" cv2.putText(img_disp, info_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2) cv2.putText(img_disp, "左键: 添加点 | 右键: 删除点", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 255), 1) cv2.putText(img_disp, "s: 保存 | b: 上一张 | n: 下一张 | q: 退出", (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 0), 1) # 绘制已有点 for pt in points: cv2.circle(img_disp, tuple(pt), 5, (0, 0, 255), -1) # 鼠标回调函数 def mouse_callback(event, x, y, flags, param): nonlocal img_disp, img, points if event == cv2.EVENT_LBUTTONDOWN: points.append((x, y)) cv2.circle(img_disp, (x, y), 5, (0, 0, 255), -1) cv2.imshow("标注工具 - 黑色小圆点", img_disp) elif event == cv2.EVENT_RBUTTONDOWN and points: # 移除距离点击位置最近的点 if points: dists = [((x - pt[0])**2 + (y - pt[1])**2) for pt in points] nearest_idx = np.argmin(dists) points.pop(nearest_idx) # 重绘图 img_disp = img.copy() cv2.putText(img_disp, info_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2) cv2.putText(img_disp, "左键: 添加点 | 右键: 删除点", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 255), 1) cv2.putText(img_disp, "s: 保存 | b: 上一张 | n: 下一张 | q: 退出", (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 0), 1) for pt in points: cv2.circle(img_disp, pt, 5, (0, 0, 255), -1) cv2.imshow("标注工具 - 黑色小圆点", img_disp) cv2.setMouseCallback("标注工具 - 黑色小圆点", mouse_callback) cv2.imshow("标注工具 - 黑色小圆点", img_disp) while True: key = cv2.waitKey(1) & 0xFF if key == ord('s'): # 保存 height, width = img.shape[:2] if not img_info: # 新建图像记录 img_id = len(annotations["images"]) annotations["images"].append({ "id": img_id, "file_name": img_file, "width": width, "height": height }) else: img_id = img_info["id"] # 删除旧标注 annotations["annotations"] = [ ann for ann in annotations["annotations"] if ann["image_id"] != img_id ] # 添加新标注 for pt in points: annotations["annotations"].append({ "image_id": img_id, "point": list(pt), "category": "black_dot" }) with open(annotation_file, 'w') as f: json.dump(annotations, f, indent=2) print(f"✅ 标注保存: {img_file} - {len(points)}个点") current_idx += 1 # 保存后自动下一张 break elif key == ord('n'): # 下一张(不保存) current_idx += 1 break elif key == ord('b'): # 上一张 if current_idx > 0: current_idx -= 1 else: print("已经是第一张图像") break elif key == ord('q'): # 退出 cv2.destroyAllWindows() return annotations cv2.destroyAllWindows() print(f"✅ 所有标注保存到 {annotation_file}") return annotations # 3. 数据集构建 class DotDataset(Dataset): """黑色小圆点检测数据集""" def __init__(self, image_dir, annotations, img_size=256, transform=None): self.image_dir = image_dir self.annotations = annotations self.img_size = (img_size, img_size) self.transform = transform self.img_size = (img_size, img_size) # 创建图像ID到点坐标的映射 self.image_points = {} for ann in annotations["annotations"]: img_id = ann["image_id"] if img_id not in self.image_points: self.image_points[img_id] = [] self.image_points[img_id].append(ann["point"]) # 创建图像ID到文件名的映射 self.image_files = {img["id"]: img["file_name"] for img in annotations["images"]} def __len__(self): return len(self.annotations["images"]) def __getitem__(self, idx): img_info = self.annotations["images"][idx] img_id = img_info["id"] img_file = self.image_files[img_id] img_path = os.path.join(self.image_dir, img_file) # 读取图像 image = cv2.imread(img_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) orig_h, orig_w = image.shape[:2] # 调整图像大小 image = cv2.resize(image, self.img_size) # 创建热力图标签 (缩小4倍) heatmap = np.zeros((self.img_size[1], self.img_size[0]), dtype=np.float32) points = self.image_points.get(img_id, []) for pt in points: # 归一化坐标 nx = pt[0] / orig_w ny = pt[1] / orig_h # 转换到热力图坐标 hx = int(nx * (self.img_size[0])) hy = int(ny * (self.img_size[1])) if 0 <= hx < heatmap.shape[0] and 0 <= hy < heatmap.shape[1]: # 应用高斯分布 heatmap = self.apply_gaussian(heatmap, hx, hy, sigma=4.0) # 应用数据增强 if self.transform: transformed = self.transform(image=image, mask=heatmap) image = transformed["image"] heatmap = transformed["mask"] return image, heatmap.unsqueeze(0) # 添加通道维度 def apply_gaussian(self, heatmap, x, y, sigma=1.0): """在指定位置添加高斯分布""" h, w = heatmap.shape xv, yv = np.meshgrid(np.arange(w), np.arange(h)) dist = (xv - x)**2 + (yv - y)**2 gaussian = np.exp(-dist / (2 * sigma**2)) return np.maximum(heatmap, gaussian) def visualize(self, idx): """可视化样本""" image, heatmap = self.__getitem__(idx) if isinstance(image, torch.Tensor): image = image.permute(1, 2, 0).numpy() heatmap = heatmap.squeeze().numpy() # 创建热力图可视化 heatmap_viz = cv2.normalize(heatmap, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8) heatmap_viz = cv2.applyColorMap(heatmap_viz, cv2.COLORMAP_JET) heatmap_viz = cv2.resize(heatmap_viz, self.img_size) # 叠加热力图 overlay = cv2.addWeighted((image*255).astype(np.uint8), 0.7, heatmap_viz, 0.3, 0) plt.figure(figsize=(15, 5)) plt.subplot(131) plt.imshow(image) plt.title("原始图像") plt.subplot(132) plt.imshow(heatmap_viz) plt.title("热力图") plt.subplot(133) plt.imshow(overlay) plt.title("叠加效果") plt.show() # 4. 检测模型 class DotDetector(nn.Module): """黑色小圆点检测模型""" def __init__(self, in_channels=3, out_channels=1, base_channels=32): super().__init__() # 编码器 self.encoder = nn.Sequential( nn.Conv2d(in_channels, base_channels, 3, padding=1), nn.ReLU(), nn.BatchNorm2d(base_channels), nn.MaxPool2d(2), # 32x128x128 nn.Conv2d(base_channels, base_channels*2, 3, padding=1), nn.ReLU(), nn.BatchNorm2d(base_channels*2), nn.MaxPool2d(2), # 64x64x64 nn.Conv2d(base_channels*2, base_channels*4, 3, padding=1), nn.ReLU(), nn.BatchNorm2d(base_channels*4), nn.MaxPool2d(2), # 128x32x32 nn.Conv2d(base_channels*4, base_channels*8, 3, padding=1), nn.ReLU(), nn.BatchNorm2d(base_channels*8), nn.MaxPool2d(2), # 256x16x16 ) # 解码器 self.decoder = nn.Sequential( nn.Conv2d(base_channels*8, base_channels*4, 3, padding=1), nn.ReLU(), nn.BatchNorm2d(base_channels*4), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), # 128x32x32 nn.Conv2d(base_channels*4, base_channels*2, 3, padding=1), nn.ReLU(), nn.BatchNorm2d(base_channels*2), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), # 64x64x64 nn.Conv2d(base_channels*2, base_channels, 3, padding=1), nn.ReLU(), nn.BatchNorm2d(base_channels), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), # 32x128x128 nn.Conv2d(base_channels, base_channels//2, 3, padding=1), nn.ReLU(), nn.BatchNorm2d(base_channels//2), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), # 16x256x256 nn.Conv2d(base_channels//2, out_channels, 1), nn.Sigmoid() # 输出概率图 [0,1] ) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x # 5. 训练函数 def train_model(model, train_loader, val_loader, epochs=50, lr=0.001): """训练检测模型""" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) # 损失函数和优化器 criterion = nn.BCELoss() # 二元交叉熵 optimizer = optim.Adam(model.parameters(), lr=lr) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=5) best_val_loss = float('inf') for epoch in range(epochs): # 训练阶段 model.train() train_loss = 0.0 for images, targets in tqdm(train_loader, desc=f"训练轮次 {epoch+1}/{epochs}"): images = images.to(device) targets = targets.to(device) # 前向传播 outputs = model(images) loss = criterion(outputs, targets) # 反向传播 optimizer.zero_grad() loss.backward() optimizer.step() train_loss += loss.item() * images.size(0) train_loss /= len(train_loader.dataset) # 验证阶段 model.eval() val_loss = 0.0 with torch.no_grad(): for images, targets in val_loader: images = images.to(device) targets = targets.to(device) outputs = model(images) loss = criterion(outputs, targets) val_loss += loss.item() * images.size(0) val_loss /= len(val_loader.dataset) scheduler.step(val_loss) # 打印进度 print(f"轮次 [{epoch+1}/{epochs}] - 训练损失: {train_loss:.4f}, 验证损失: {val_loss:.4f}") # 保存最佳模型 if val_loss < best_val_loss: best_val_loss = val_loss torch.save(model.state_dict(), "best_dot_detector.pth") print(f"✅ 保存最佳模型 (验证损失: {val_loss:.4f})") print("训练完成!") return model # 6. 主流程 def main(): # 1. 视频帧提取 video_path = r"E:\专业综合实践-光电镊\参考资料\参考资料\41378_2025_892_MOESM3_ESM.mp4" # 替换为你的视频路径 frames_dir = "extracted_frames" print("📹 提取视频帧...") extract_video_frames(video_path, frames_dir, frame_interval=15) # 2. 手动标注 annotation_file = "dot_annotations.json" print("\n🖱️ 开始标注黑色小圆点...") annotations = annotate_points(frames_dir, annotation_file) # 3. 数据预处理 print("\n📊 准备数据集...") transform = A.Compose([ A.RandomRotate90(), A.HorizontalFlip(p=0.5), A.RandomBrightnessContrast(p=0.5), A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), ToTensorV2() ]) dataset = DotDataset(frames_dir, annotations, img_size=256, transform=transform) # 可视化样本 print("\n👀 可视化样本...") dataset.visualize(0) # 划分训练集和验证集 train_idx, val_idx = train_test_split( range(len(dataset)), test_size=0.2, random_state=42 ) train_set = torch.utils.data.Subset(dataset, train_idx) val_set = torch.utils.data.Subset(dataset, val_idx) # 创建数据加载器 train_loader = DataLoader( train_set, batch_size=8, shuffle=True, num_workers=2 ) val_loader = DataLoader( val_set, batch_size=8, shuffle=False, num_workers=2 ) # 4. 训练模型 print("\n🤖 创建和训练模型...") model = DotDetector() train_model( model, train_loader, val_loader, epochs=50, lr=0.001 ) print("\n✅ 训练完成! 最佳模型已保存为 'best_dot_detector.pth'") if __name__ == "__main__": main() 得到了figure1,然后怎么操作
10-11
内容概要:本文详细介绍了“秒杀商城”微服务架构的设计与实战全过程,涵盖系统从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。重点解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现与配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系统吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪与Prometheus+Grafana监控体系,构建可观测性强的微服务系统。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系统设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、统一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,重点关注秒杀流程设计、服务间通信机制、分布式事务实现和系统性能优化部分,结合代码调试与监控工具深入理解各组件协作原理,真正掌握高并发微服务系统的构建能力。
<think>好的,我现在需要回答用户关于Transform架构核心部件及其工作流程的问题,并提供流程图。首先,我需要回顾Transform架构的基本结构和主要组成部分。Transform模型最初由Vaswani等人在2017年的论文《Attention Is All You Need》中提出,其核心是自注意力机制和多头注意力模块。 首先,确定核心部件。根据论文,Transform架构主要包含以下几个部分:输入嵌入层(Input Embedding)、位置编码(Positional Encoding)、多头注意力机制(Multi-Head Attention)、前馈神经网络(Feed Forward Network)、层归一化(Layer Normalization)和残差连接(Residual Connection)。这些部件构成了编码器和解码器的基本单元。 接下来是工作流程。编码器部分处理输入序列,解码器生成输出序列。每个编码器层包含自注意力层和前馈网络,而解码器层除了这两个之外还有编码器-解码器注意力层。需要详细描述数据在这些组件中的流动过程,比如输入序列经过嵌入和位置编码后,进入多个编码器层,每个层处理后的结果传递给下一个层,直到编码器堆栈结束。解码器则接收编码器的输出和之前生成的输出,通过自注意力和编码器-解码器注意力生成下一个词。 关于流程图,用户希望有视觉化的表示,但文本描述中无法直接插入图片。因此,需要用文字描述流程图的步骤,或者建议用户参考相关论文中的图示。同时,可能需要结合用户提供的引用内容,比如引用[1]提到的WindowOperator的processElement方法,但Transform架构属于深度学习模型,与Flink窗口算子的关联不大,可能引用[2]中提到的模型训练能力更相关,可以提及在训练Transform时如何优化编码能力。 需要确保使用正确的中文术语,并按照用户要求的结构化格式回答,分点列出核心部件,详细说明工作流程,然后以伪代码或流程图描述。此外,需要生成相关问题,可能与优化、应用场景或具体实现细节相关。 最后,检查LaTeX格式是否正确,所有数学表达式如自注意力的公式需要用$$...$$包裹,行内公式用$...$。例如,自注意力计算中的Q、K、V矩阵运算需要正确呈现。 总结步骤: 1. 列举Transform的核心部件,并简要说明每个部件的作用。 2. 详细描述编码器和解码器的工作流程,包括数据流向和各组件的交互。 3. 提供流程图的文字描述或建议参考原论文图表。 4. 生成相关问题,如多头注意力的作用、位置编码的重要性等。 5. 确保引用标记正确,但用户提供的引用可能与Transform无关,需合理关联或说明。</think>### Transform架构核心部件及工作流程 #### 核心部件 1. **输入嵌入层(Input Embedding)** 将输入符号(如单词)转换为高维向量表示,例如:$x \in \mathbb{R}^{d_{\text{model}}}$。 2. **位置编码(Positional Encoding)** 通过函数$PE_{(pos, 2i)} = \sin(pos/10000^{2i/d_{\text{model}}})$和$PE_{(pos, 2i+1)} = \cos(pos/10000^{2i/d_{\text{model}}})$添加序列位置信息,解决自注意力机制缺乏位置感知的问题[^1]。 3. **多头注意力(Multi-Head Attention)** 将查询(Query)、键(Key)、值(Value)矩阵拆分为多个子空间并行计算,公式为: $$\text{MultiHead}(Q,K,V) = \text{Concat}(\text{head}_1, \dots, \text{head}_h)W^O$$ 其中每个$\text{head}_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)$。 4. **前馈神经网络(Feed Forward Network, FFN)** 包含两层线性变换和ReLU激活函数: $$\text{FFN}(x) = \max(0, xW_1 + b_1)W_2 + b_2$$ 5. **残差连接与层归一化(Add & Norm)** 对子层输出进行残差连接后层归一化: $$\text{LayerNorm}(x + \text{Sublayer}(x))$$ 6. **编码器-解码器注意力(Encoder-Decoder Attention)** 解码器中通过查询(Q)与编码器输出的键(K)、值(V)交互,实现跨序列对齐。 --- #### 工作流程 1. **编码器流程** - **输入处理**:输入序列经过嵌入和位置编码后,生成初始表示$X_{\text{embedded}} \in \mathbb{R}^{n \times d_{\text{model}}}$。 - **编码器层堆叠**:每个编码器层依次执行: 1. **多头自注意力**:计算输入序列内部的关系。 2. **残差连接 + 层归一化** 3. **前馈网络** 4. **残差连接 + 层归一化** 2. **解码器流程** - **输出处理**:目标序列经过嵌入和位置编码后输入解码器。 - **解码器层堆叠**:每个解码器层依次执行: 1. **掩码多头自注意力**(防止未来信息泄漏) 2. **残差连接 + 层归一化** 3. **编码器-解码器注意力**(Q来自解码器,K/V来自编码器输出) 4. **残差连接 + 层归一化** 5. **前馈网络** 6. **残差连接 + 层归一化** - **输出生成**:最终通过线性层和Softmax生成概率分布。 --- #### 流程图示意(文字描述) ```plaintext 输入序列 → 嵌入 + 位置编码 → [编码器层 × N] → 编码器输出 ↓ 目标序列 → 嵌入 + 位置编码 → [解码器层 × N] → 线性层 → Softmax → 输出概率 ``` 每个编码器层结构: `自注意力 → Add & Norm → FFN → Add & Norm` 每个解码器层结构: `掩码自注意力 → Add & Norm → 编码器-解码器注意力 → Add & Norm → FFN → Add & Norm` ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值