[BZOJ1555] KD之死(贪心+堆)

本文介绍了一种基于贪心策略的最优盒子选择算法,通过排序和堆维护策略,在考虑必选盒子的基础上,最大化选择盒子的数量。算法适用于有承重限制的场景,如车辆装载问题,复杂度为O(nlogn)。

题意

  • 给你 n n n个盒子,每个盒子有重量 w w w和可以承受的最大重量 t t t两个属性,有些盒子是必选的,你现在要在把所有的必选的盒子选定的基础上,使选择的盒子最多,最开始你有一辆能承重 v v v的车,如果不能选完必选的盒子就输出 F o o l i s h   S D ! Foolish \ SD! Foolish SD!

首先对于两个盒子 a a a b b b,如果 a a a放在 b b b上方,那么承重为 b t − a w b_t-a_w btaw;如果 b b b放在 a a a上方,那么承重为 a t − b w a_t-b_w atbw。如果 a a a放在 b b b上方更优,那么 b t − a w &gt; a t − b w b_t-a_w&gt;a_t-b_w btaw>atbw,即 a t + a w &lt; b t + b w a_t+a_w&lt;b_t+b_w at+aw<bt+bw

我们可以贪心地按 a t + a w a_t+a_w at+aw从小到大来从上到下确定盒子的顺序,因为从上到下每个物品上面的重量和是定值,选择没有后效性,用一个堆来维护已经选择的盒子中不是必选的盒子中质量最大值,每次加入一个必选的盒子一直删除堆中的元素,直到剩余重量可以放在这个盒子上,或者堆为空,如果加入一个不是必选的,能放就直接放 ,不能放的话比较它和堆顶元素谁更优即可。

对于车我们把它当作一个必选的盒子插在排完序的序列后面就可以了,复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn)

#include <bits/stdc++.h>

using namespace std;

const int N = 6e5 + 10;

int n, m, maxv, Sumw, ans;

struct node {
	int w, t, mst; 
	bool operator < (const node &T) const {
		return w + t < T.w + T.t;
	}
}A[N];

priority_queue<int> q; 

int main() {
#ifndef ONLINE_JUDGE
	freopen("1555.in", "r", stdin);
	freopen("1555.out", "w", stdout);
#endif

	scanf("%d%d%d", &n, &m, &maxv);
	for (int i = 1; i <= n; ++ i)
		scanf("%d%d", &A[i].w, &A[i].t);
	for (int i = 1, x; i <= m; ++ i) 
		scanf("%d", &x), A[x].mst = 1; 
	sort(A + 1, A + n + 1);
	A[++ n] = (node){0, maxv, 1};
	
	for (int i = 1; i <= n; ++ i) {
		if (A[i].mst) {
			while (Sumw > A[i].t) {
				if (q.empty()) return puts("Foolish SD!"), 0;
				Sumw -= q.top(), q.pop(), -- ans;
			}
			Sumw += A[i].w;
		}
		else {
			if (Sumw > A[i].t) {
				if (!q.empty() && Sumw - q.top() <= A[i].t && A[i].w < q.top())
					Sumw -= q.top(), q.pop(), q.push(A[i].w), Sumw += A[i].w;
				continue;
			}
			Sumw += A[i].w, q.push(A[i].w);
		}
		++ ans;
	}

	printf("%d\n", ans - 1);

	return 0;
}

【负荷预测】基于VMD-CNN-LSTM的负荷预测研究(Python代码实现)内容概要:本文介绍了基于变分模态分解(VMD)、卷积神经网络(CNN)和长短期记忆网络(LSTM)相结合的VMD-CNN-LSTM模型在负荷预测中的研究与应用,采用Python代码实现。该方法首先利用VMD对原始负荷数据进行分解,降低序列复杂性并提取不同频率的模态分量;随后通过CNN提取各模态的局部特征;最后由LSTM捕捉时间序列的长期依赖关系,实现高精度的负荷预测。该模型有效提升了预测精度,尤其适用于非平稳、非线性的电力负荷数据,具有较强的鲁棒性和泛化能力。; 适合人群:具备一定Python编程基础和深度学习背景,从事电力系统、能源管理或时间序列预测相关研究的科研人员及工程技术人员,尤其适合研究生、高校教师及电力行业从业者。; 使用场景及目标:①应用于日前、日内及实时负荷预测场景,支持智慧电网调度与能源优化管理;②为研究复合型深度学习模型在非线性时间序列预测中的设计与实现提供参考;③可用于学术复现、课题研究或实际项目开发中提升预测性能。; 阅读建议:建议读者结合提供的Python代码,深入理解VMD信号分解机制、CNN特征提取原理及LSTM时序建模过程,通过实验调试参数(如VMD的分解层数K、惩罚因子α等)优化模型性能,并可进一步拓展至风电、光伏等其他能源预测领域。
【轴承故障诊断】基于融合鱼鹰和柯西变异的麻雀优化算法OCSSA-VMD-CNN-BILSTM轴承诊断研究【西储大学数据】(Matlab代码实现)内容概要:本文研究了一种基于融合鱼鹰和柯西变异的麻雀优化算法(OCSSA)优化变分模态分解(VMD)参数,并结合卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)的轴承故障诊断模型。该方法利用西储大学轴承数据集进行验证,通过OCSSA算法优化VMD的分解层数K和惩罚因子α,有效提升信号去噪与特征提取能力;随后利用CNN提取故障特征的空间信息,BiLSTM捕捉时间序列的长期依赖关系,最终实现高精度的轴承故障识别。整个流程充分结合了智能优化、信号处理与深度学习技术,显著提升了复杂工况下故障诊断的准确性与鲁棒性。; 适合人群:具备一定信号处理、机器学习及MATLAB编程基础的研究生、科研人员及从事工业设备故障诊断的工程技术人员。; 使用场景及目标:①解决传统VMD参数依赖人工经验选择的问题,实现自适应优化;②构建高效准确的轴承故障诊断模型,适用于旋转机械设备的智能运维与状态监测;③为类似机电系统故障诊断提供可借鉴的技术路线与代码实现参考。; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点关注OCSSA算法的设计机制、VMD参数优化过程以及CNN-BiLSTM网络结构的搭建与训练细节,同时可尝试在其他故障数据集上迁移应用以加深理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值