语音合成(speech synthesis)方向六:歌唱合成(singing voice synthesis)

本文探讨了歌唱合成(Singing Voice Synthesis, SVS)的最新进展,特别是在数据充足和数据匮乏条件下的研究策略。在数据充足的情况下,系统架构设计和高采样率数据的应用成为关键;而在数据匮乏时,研究人员借助低质数据、歌声转换和迁移学习来提升合成质量。文章列举了多个实例,如ByteSing、XiaoIceSing、HiFiSinger和DeepSinger等,展示了如何通过创新方法克服训练语料的局限,实现高质量的歌唱合成。" 124421352,9205853,Python爬虫:停电公告解密抓取,"['Python爬虫', '数据解密', '网络爬虫', '加密技术', 'JavaScript']

声明:工作以来主要从事TTS工作,工程算法都有涉及,平时看些文章做些笔记。文章中难免存在错误的地方,还望大家海涵。平时搜集一些资料,方便查阅学习:TTS 论文列表 低调奋进 TTS 开源数据 低调奋进。如转载,请标明出处。欢迎关注微信公众号:低调奋进


目录

1 研究背景

2 研究情况

2.1 数据充足

2.1.1 系统架构设计

2.1.2 高采样率数据

2.2 数据匮乏

2.2.1 低质数据

2.2.2 歌声转换

2.2.3 迁移学习

3 总结

4  引用


1 研究背景

歌唱合成SVS(singing voice synthesis)是根据歌词和乐谱信息合成歌唱。相比于TTS(text to speech)使机器“开口说话”,歌唱合成则是让机器唱歌,因此更具有娱乐性。互联网的时代,人机交互更加频繁和智能,歌唱合成则添加了人机交互的趣味性,因此受到工业界和学术界的关注。相比TTS,歌唱合成需要更多的输入信息,比如乐谱中的音高信息,节拍信息等等。但是歌唱合成的训练语料十分昂贵,为获得较高品质的歌唱干声和乐谱信息,研究者需要付出上百万的开销,这也阻碍大量研究人员的脚步。本文针对2020年歌唱合成的发展状况,总结在是否拥有大量训练数据前提下采用的不同方案,以供同行参考。

各家demo的链接:

Learn2Sing

https://bytesings.github.io/paper1.html 

https://xiaoicesing.github.io/ 

HiFiSinger: Towards High-Fidelity Neural Singing Voice Synthesis - Speech Research

DurIAN-SC: Duration Informed Attention Network based Singing Voice Conversion System | [“DurIAN_SC”]

DeepSinger: Singing Voice Synthesis with Data Mined From the Web - Speech Research

2 研究情况

其实歌声合成(singing voice synthesis)的文章不算太多,本打算通读以后再做个总结,但思来想去还不如先总结之后,以后再慢慢修改,也算“敏捷”总结。我找的文章都是2020年的文章,这样可以看出去年歌唱合成的发展动态。我们知道,歌唱合成之所以没有像TTS这样受到强烈关注的原因之一就是训练语料的匮乏。相较普通音频的训练语料,歌唱合成的训练语料要贵好几倍,因此很少有企业和研究所能够承担此种开销。歌唱合成训练语料相比普通语料的成本较高的原因:1)需要专业歌手在专业的录音棚录制高音质的干声;2)歌声的标注需要更复杂的信息,标注成本较高。是否拥有充足的训练数据导致不同的研究方向和策略,因此我根据训练数据是否充足进行以下分类:

2.1 数据充足

    2.1.1 系统架构设计

    (a)ByteSing: A Chinese Singing Voice Synthesis System Using Duration Allocated Encoder-Decoder Acoustic Models and WaveRNN Vocoders

     (b)XiaoiceSing: A High-Quality and Integrated Singing Voice Synthesis System

   2.1.2 高采样率数据

     (a)HiFiSinger: Towards High-Fidelity Neural Singing Voice Synthesis

2.2 数据匮乏

    2.2.1 低质数据

      (a)Deepsinger: Singing voice synthesis with data mined from the web

    2.2.2 歌声转换

      (a)Durian-sc: Duration informed attention network based singing voice conversion system

     2.2.2 迁移学习

       (a)learn2sing target speaker singing voice synthesis by learning from a singing teacher

2.1 数据充足

2.1.1 系统架构设计

2.1.1.1 ByteSing: A Chinese Singing Voice Synthesis System Using Duration Allocated Encoder-Decoder Acoustic Models and WaveRNN Vocoders

图一展示了ByteSing 系统的整体架构,该系统包含时长模型,声学模型和神经网络声码器。时长模型的输入为音素+音素类型+节奏和音符时长,输出为音素对应的时长。声学模型的输入为音素+音符音高+每帧的位置信息,输出为声学信息,具体为图2展示。看到图2结构可能大家跟我有相同的疑惑,既然时长模型已经预测出了每个音素时长,为什么还使用attention?本文在实验部分给出了实验结果:使用attention的效果更好。神经网络声码器是把声学特征转成波形,具体结构图3所示。

深度学习机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我叫永强

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值