codeforces 1195E

本文介绍了一种使用单调队列解决 CodeForces 1195E 题目的新颖方法。该方法通过更新每个 a*b 子矩阵的右下角值来快速求出所有子矩阵的最小值之和。

传送门:http://codeforces.com/problemset/problem/1195/E

题意是对于一个n*m矩阵,把所有a*b的子矩阵中的最小值加起来,问和是多少?

考场上想得是从小到大枚举数字,然后就知道这个数字{i,j}能统治的区域为{max{1,i-a+1},max{1,j-b+1}}到{min{n,i+a-1},min{m,j+b-1}}这个矩形,然后二维线段树平面覆盖平面查询,然而发现并不会做。。。

rols一手单调队列20分钟过了这题教我做人,说到单调队列的时候我还是半天想不通怎么用单调队列,但是换个思路,对于每个a*b,我们只考虑右下角那个位置,在那个位置取值,用单调队列让那个位置的值等于整个a*b的最小值。

这个思路和从小到大枚举数字然后占领一块平面区域不同,它考虑的是不断更新出每个a*b右下角那个位置,于是我们先用每个位置的值(mp[i][j])对第i行进行单调队列维护处f[i][j]表示第i行到j列为止能得到的最小值,f[i][j]=min{mp[i][j-b+1]--mp[i][j]};

那么对于某一个a*b的右下角{i,j}, 它的值就是min{f[i-a+1][j]---f[i][j]},也就是从第i-a+1行到第i行中能到达第j列的最小值的最小值,这样就把这个a*b的矩阵的最小值得到了。

 

#include<bits/stdc++.h>
#define maxl 3010

using namespace std;

int n,m,a,b,cnt;
long long g,x,y,z,ans;
long long mp[maxl][maxl],f[maxl][maxl];
long long q[maxl],id[maxl];
struct node
{
	int x,y;
	long long val;
};
vector <node> in[maxl][maxl]; 

inline void prework()
{
	scanf("%d%d%d%d",&n,&m,&a,&b);
	scanf("%lld%lld%lld%lld",&g,&x,&y,&z);
	for(int i=1;i<=n;i++)
		for(int j=1;j<=m;j++)
		{
			mp[i][j]=g;
			g=(g*x+y)%z;
		}
}

inline void mainwork()
{
	for(int i=1;i<=n;i++)
	{
		int l=1,r=0;
		for(int j=1;j<=m;j++)
		{
			while(l<=r && q[l]<=j-b) l++;
			while(l<=r && mp[i][q[r]]>=mp[i][j]) r--;
			q[++r]=j;
			f[i][j]=mp[i][q[l]];
		}
	}
	for(int j=b;j<=m;j++)
	{
		int l=1,r=0;
		for(int i=1;i<=n;i++)
		{
			while(l<=r && q[l]<=i-a) l++;
			while(l<=r && f[q[r]][j]>=f[i][j]) r--;
			q[++r]=i;
			if(i>=a)
				ans+=f[q[l]][j];
		}
	}
}

inline void print()
{
	printf("%lld",ans);
}

int main()
{
	prework();
	mainwork();
	print();
	return 0;
}

 

### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值