codeforces1369D TediousLee

本文深入解析了Codeforces编号为1369/D的问题,通过分析树形结构,提出了一种从下往上的求解策略,确保获取最大值。特别讨论了在不同条件下如何选择节点以最大化结果,并提供了一个C++代码实现,展示了递归动态规划的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://codeforces.com/problemset/problem/1369/D

一眼结论,从这棵树从下往上,能取就取,肯定能得到最大值,因为儿子数量更多一些,如果取父节点会影响很多子树。

然后再考虑,i=3,只能取跟节点的1个爪子,i=4的时候,从下往上取,取中间的爪子,根节点不会被取,i=5的时候,也不会取根节点

然后可以发现 对于level i , 由3棵子树+1个根节点形成,其中2棵i-2的树,1棵i-1的树

那么如果i-2和i-1都不取根节点,也就是i的根节点的子节点,那么根节点这里就可以在子树都取完最大值的基础上多取一个爪子。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

const int maxl=2e6+10;
const int mod=1e9+7;

int n,m,cas,k,cnt,tot,ans;
char s[maxl];
bool in[maxl]; 
ll dp[maxl];

inline void prework()
{
	scanf("%d",&n);
} 

inline void mainwork()
{
	
}

inline void print()
{
	printf("%lld\n",4*dp[n]%mod);
}

int main()
{
	dp[1]=0;dp[2]=0;dp[3]=1;
	for(int i=4;i<maxl;i++)
	if(i%3==0)
		dp[i]=(2*dp[i-2]+dp[i-1]+1)%mod;
	else
		dp[i]=(2*dp[i-2]+dp[i-1])%mod;
	int t=1;
	scanf("%d",&t);
	for(cas=1;cas<=t;cas++)
	{
		prework();
		mainwork();
		print();
	}
	return 0;
}

 

### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值