Xilinx SLCR driver

Xilinx Zynq SLCR 驱动解析
本文详细介绍了Xilinx Zynq系列SoC中SLCR(System Level Control and Reset)模块的驱动实现。内容覆盖了SLCR寄存器的解锁、读写操作,以及系统重启、CPU状态管理等关键功能。此外,还探讨了设备ID读取、OCM配置获取等实用功能,并提供了早期初始化和FPGA加载前后通信控制的具体实现。
/*
 * Xilinx SLCR driver
 *
 * Copyright (c) 2011-2013 Xilinx Inc.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA
 * 02139, USA.
 */

#include <linux/io.h>
#include <linux/reboot.h>
#include <linux/mfd/syscon.h>
#include <linux/of_address.h>
#include <linux/regmap.h>
#include <linux/clk/zynq.h>
#include "common.h"

/* register offsets */
#define SLCR_UNLOCK_OFFSET		0x8   /* SCLR unlock register */
#define SLCR_PS_RST_CTRL_OFFSET		0x200 /* PS Software Reset Control */
#define SLCR_FPGA_RST_CTRL_OFFSET	0x240 /* FPGA Software Reset Control */
#define SLCR_A9_CPU_RST_CTRL_OFFSET	0x244 /* CPU Software Reset Control */
#define SLCR_REBOOT_STATUS_OFFSET	0x258 /* PS Reboot Status */
#define SLCR_PSS_IDCODE			0x530 /* PS IDCODE */
#define SLCR_L2C_RAM			0xA1C /* L2C_RAM in AR#54190 */
#define SLCR_LVL_SHFTR_EN_OFFSET	0x900 /* Level Shifters Enable */
#define SLCR_OCM_CFG_OFFSET		0x910 /* OCM Address Mapping */

#define SLCR_UNLOCK_MAGIC		0xDF0D
#define SLCR_A9_CPU_CLKSTOP		0x10
#define SLCR_A9_CPU_RST			0x1
#define SLCR_PSS_IDCODE_DEVICE_SHIFT	12
#define SLCR_PSS_IDCODE_DEVICE_MASK	0x1F

void __iomem *zynq_slcr_base;
static struct regmap *zynq_slcr_regmap;

/**
 * zynq_slcr_write - Write to a register in SLCR block
 *
 * @val:	Value to write to the register
 * @offset:	Register offset in SLCR block
 *
 * Return:	a negative value on error, 0 on success
 */
static int zynq_slcr_write(u32 val, u32 offset)
{
	return regmap_write(zynq_slcr_regmap, offset, val);
}

/**
 * zynq_slcr_read - Read a register in SLCR block
 *
 * @val:	Pointer to value to be read from SLCR
 * @offset:	Register offset in SLCR block
 *
 * Return:	a negative value on error, 0 on success
 */
static int zynq_slcr_read(u32 *val, u32 offset)
{
	return regmap_read(zynq_slcr_regmap, offset, val);
}

/**
 * zynq_slcr_unlock - Unlock SLCR registers
 *
 * Return:	a negative value on error, 0 on success
 */
static inline int zynq_slcr_unlock(void)
{
	zynq_slcr_write(SLCR_UNLOCK_MAGIC, SLCR_UNLOCK_OFFSET);

	return 0;
}

/**
 * zynq_slcr_get_device_id - Read device code id
 *
 * Return:	Device code id
 */
u32 zynq_slcr_get_device_id(void)
{
	u32 val;

	zynq_slcr_read(&val, SLCR_PSS_IDCODE);
	val >>= SLCR_PSS_IDCODE_DEVICE_SHIFT;
	val &= SLCR_PSS_IDCODE_DEVICE_MASK;

	return val;
}

/**
 * zynq_slcr_system_restart - Restart the entire system.
 *
 * @nb:		Pointer to restart notifier block (unused)
 * @action:	Reboot mode (unused)
 * @data:	Restart handler private data (unused)
 *
 * Return:	0 always
 */
static
int zynq_slcr_system_restart(struct notifier_block *nb,
			     unsigned long action, void *data)
{
	u32 reboot;

	/*
	 * Clear 0x0F000000 bits of reboot status register to workaround
	 * the FSBL not loading the bitstream after soft-reboot
	 * This is a temporary solution until we know more.
	 */
	zynq_slcr_read(&reboot, SLCR_REBOOT_STATUS_OFFSET);
	zynq_slcr_write(reboot & 0xF0FFFFFF, SLCR_REBOOT_STATUS_OFFSET);
	zynq_slcr_write(1, SLCR_PS_RST_CTRL_OFFSET);
	return 0;
}

static struct notifier_block zynq_slcr_restart_nb = {
	.notifier_call	= zynq_slcr_system_restart,
	.priority	= 192,
};

/**
 * zynq_slcr_get_ocm_config - Get SLCR OCM config
 *
 * return:	OCM config bits
 */
u32 zynq_slcr_get_ocm_config(void)
{
	u32 ret;

	zynq_slcr_read(&ret, SLCR_OCM_CFG_OFFSET);
	return ret;
}

/**
 * zynq_slcr_init_preload_fpga - Disable communication from the PL to PS.
 */
void zynq_slcr_init_preload_fpga(void)
{
	/* Assert FPGA top level output resets */
	zynq_slcr_write(0xF, SLCR_FPGA_RST_CTRL_OFFSET);

	/* Disable level shifters */
	zynq_slcr_write(0, SLCR_LVL_SHFTR_EN_OFFSET);

	/* Enable output level shifters */
	zynq_slcr_write(0xA, SLCR_LVL_SHFTR_EN_OFFSET);
}
EXPORT_SYMBOL(zynq_slcr_init_preload_fpga);

/**
 * zynq_slcr_init_postload_fpga - Re-enable communication from the PL to PS.
 */
void zynq_slcr_init_postload_fpga(void)
{
	/* Enable level shifters */
	zynq_slcr_write(0xf, SLCR_LVL_SHFTR_EN_OFFSET);

	/* Deassert AXI interface resets */
	zynq_slcr_write(0, SLCR_FPGA_RST_CTRL_OFFSET);
}
EXPORT_SYMBOL(zynq_slcr_init_postload_fpga);

/**
 * zynq_slcr_cpu_start - Start cpu
 * @cpu:	cpu number
 */
void zynq_slcr_cpu_start(int cpu)
{
	u32 reg;

	zynq_slcr_read(&reg, SLCR_A9_CPU_RST_CTRL_OFFSET);
	reg &= ~(SLCR_A9_CPU_RST << cpu);
	zynq_slcr_write(reg, SLCR_A9_CPU_RST_CTRL_OFFSET);
	reg &= ~(SLCR_A9_CPU_CLKSTOP << cpu);
	zynq_slcr_write(reg, SLCR_A9_CPU_RST_CTRL_OFFSET);

	zynq_slcr_cpu_state_write(cpu, false);
}

/**
 * zynq_slcr_cpu_stop - Stop cpu
 * @cpu:	cpu number
 */
void zynq_slcr_cpu_stop(int cpu)
{
	u32 reg;

	zynq_slcr_read(&reg, SLCR_A9_CPU_RST_CTRL_OFFSET);
	reg |= (SLCR_A9_CPU_CLKSTOP | SLCR_A9_CPU_RST) << cpu;
	zynq_slcr_write(reg, SLCR_A9_CPU_RST_CTRL_OFFSET);
}

/**
 * zynq_slcr_cpu_state - Read/write cpu state
 * @cpu:	cpu number
 *
 * SLCR_REBOOT_STATUS save upper 2 bits (31/30 cpu states for cpu0 and cpu1)
 * 0 means cpu is running, 1 cpu is going to die.
 *
 * Return: true if cpu is running, false if cpu is going to die
 */
bool zynq_slcr_cpu_state_read(int cpu)
{
	u32 state;

	state = readl(zynq_slcr_base + SLCR_REBOOT_STATUS_OFFSET);
	state &= 1 << (31 - cpu);

	return !state;
}

/**
 * zynq_slcr_cpu_state - Read/write cpu state
 * @cpu:	cpu number
 * @die:	cpu state - true if cpu is going to die
 *
 * SLCR_REBOOT_STATUS save upper 2 bits (31/30 cpu states for cpu0 and cpu1)
 * 0 means cpu is running, 1 cpu is going to die.
 */
void zynq_slcr_cpu_state_write(int cpu, bool die)
{
	u32 state, mask;

	state = readl(zynq_slcr_base + SLCR_REBOOT_STATUS_OFFSET);
	mask = 1 << (31 - cpu);
	if (die)
		state |= mask;
	else
		state &= ~mask;
	writel(state, zynq_slcr_base + SLCR_REBOOT_STATUS_OFFSET);
}

/**
 * zynq_early_slcr_init - Early slcr init function
 *
 * Return:	0 on success, negative errno otherwise.
 *
 * Called very early during boot from platform code to unlock SLCR.
 */
int __init zynq_early_slcr_init(void)
{
	struct device_node *np;


    /***************************读取设备树ZYNQ控制寄存器**************/
	np = of_find_compatible_node(NULL, NULL, "xlnx,zynq-slcr");
	if (!np) {
		pr_err("%s: no slcr node found\n", __func__);
		BUG();
	}

	zynq_slcr_base = of_iomap(np, 0);
	if (!zynq_slcr_base) {
		pr_err("%s: Unable to map I/O memory\n", __func__);
		BUG();
	}

	np->data = (__force void *)zynq_slcr_base;

	zynq_slcr_regmap = syscon_regmap_lookup_by_compatible("xlnx,zynq-slcr");
	if (IS_ERR(zynq_slcr_regmap)) {
		pr_err("%s: failed to find zynq-slcr\n", __func__);
		return -ENODEV;
	}

	/* unlock the SLCR so that registers can be changed */
	zynq_slcr_unlock();

	/* See AR#54190 design advisory */
	regmap_update_bits(zynq_slcr_regmap, SLCR_L2C_RAM, 0x70707, 0x20202);

	register_restart_handler(&zynq_slcr_restart_nb);

	pr_info("%s mapped to %p\n", np->name, zynq_slcr_base);

	of_node_put(np);

	return 0;
}

 

### 技术含义解析 在嵌入式系统中,特别是基于 Xilinx Zynq UltraScale+ MPSoC 的平台上,**unlock SLCR for SLCR register write** 是指在对 SLCR(System Level Control Registers)寄存器组中的某些寄存器进行写操作之前,需要先对 SLCR 进行解锁操作。这是因为 SLCR 寄存器中包含了一些关键的系统控制寄存器,例如复位控制寄存器 `PSS_RST_CTRL`(地址 `0xF8000200`)[^1]。为了防止误操作导致系统不稳定,Xilinx 设计了锁定机制来保护这些寄存器。 具体而言,解锁操作是通过向 `SLCR_UNLOCK` 寄存器(地址 `0xF8000008`)写入特定的解锁密钥 `0xDF0D` 来完成的。该操作会临时解除对 SLCR 寄存器的写保护,使得后续的写操作可以成功执行。如果未进行解锁操作,尝试写入受保护的寄存器将不会生效,甚至可能导致系统异常。 ### 操作流程示例 以下是一个典型的解锁 SLCR 并写入寄存器的代码示例: ```c // 定义寄存器地址 #define SLCR_BASE_ADDR 0xF8000000 #define SLCR_UNLOCK (*(volatile unsigned int *)(SLCR_BASE_ADDR + 0x00000008)) #define PSS_RST_CTRL (*(volatile unsigned int *)(SLCR_BASE_ADDR + 0x00000200)) // 解锁 SLCR SLCR_UNLOCK = 0xDF0D; // 解锁 SLCR 寄存器组 // 写入 PSS_RST_CTRL 寄存器 PSS_RST_CTRL = 0x1; // 执行特定的复位控制操作 ``` 上述代码中,首先通过写入 `0xDF0D` 到 `SLCR_UNLOCK` 来解除写保护,然后才能对 `PSS_RST_CTRL` 进行写操作。此操作通常用于触发系统级复位或其他关键控制逻辑。 ### 技术背景 SLCR 寄存器组是 Zynq UltraScale+ MPSoC 中用于管理系统级配置和控制的关键寄存器区域。由于其包含对系统行为有直接影响的寄存器,因此设计了锁定机制以防止未经授权的写操作。这种机制在嵌入式开发中非常常见,特别是在涉及硬件配置、系统复位、时钟控制等场景中,确保系统的稳定性和安全性。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值