HDU 1852 快速求幂

题目wa了好多回..悲催...不能直接求逆元来计算,还是要用到数论中的小技巧啊...

贴神牛的题解吧..

// 这题主要求S
// 结论: S = (251^(n+1)-1) * (2^(3n+1)-1) / 250
// 是两个等比数列和相乘
//
// 推理:
// 2008 = 2^3 * 251
// 所以 2008^N 有 3N 个 2 和 N 个251
// 所有仅由2组成的因子有
// 2^0 2^1 2^2 ... 2^(3N)
// 设集合 C = {2^0, 2^1, 2^2 ...,2^(3N)};
// SUM(C) = 2^(3n+1)-1

// 跟251组合产生的因子有
// 251^0 * C
// 251^1 * C
// ...
// 251^N * C

// 所有因子和为:
// S = (251^(n+1)-1))/250 * (2^(3n+1)-1)

// 计算S%K:

// S 很大, 不能保存在普通的数据类型中, 需要直接计算S%K
// 因为S有个分母250, 设 S = X/250
// 则  S%K = (X/250)%K = (X%(250*K))/250
// 变成先求余数再除法的形式

知道了数论中的技巧,不能用你逆元来求哇,因为不满足gcd(250,k )或者gcd(2,k)不一定是互质的, 代码就不是再是问题了,

 

#include<stdio.h>
int mult(int a1,int n,int k){
    if(n==0) return 1;
    __int64 b=1,a = a1;
    while(n>1){
        if(n%2==0) {
            a=a*a%k;
            n/=2;
        }
        else {
            b=b*a%k;
            n--;
        }
    }
    return a*b%k;
}
int main(){
    int n,k;
    while(scanf("%d%d",&n,&k),n&&k){
        __int64 a=mult(2,3*n+1,250*k);
        __int64 b=mult(251,n+1,250*k);
        a-- , b--;
        a = ( a*b )%(250*k);
        a /= 250;
        printf("%d\n",mult(2008,a,k));
    }
}

好的,关于 HDU4992 求所有原根的问题,我可以给出以下解答: 1. 首先,我们需要知道什么是原根。原根是指模 n 意义下,所有与 n 互质的数 a 的最小正整数 k 次幂对 n 取模的值覆盖了所有与 n 互质的数。简单来说,就是如果一个数 a 是模 n 意义下的原根,那么 a 的任何正整数次幂对 n 取模的值都不相同,且能覆盖所有与 n 互质的数。 2. 为了求模 n 意义下的所有原根,我们需要先求出与 n 互质的数的个数 phi(n)。phi(n) 可以使用欧拉函数求出。 3. 然后,我们需要枚举模 n 意义下的所有数,判断它是否是原根。具体来说,对于每个 a,我们需要判断 a 的每个小于 phi(n) 的正整数次幂对 n 取模的值是否都不相同,且能覆盖所有与 n 互质的数。如果是,那么 a 就是模 n 意义下的原根。 4. 代码实现可以参考以下 Java 代码: ``` import java.util.*; public class Main { static int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } static int phi(int n) { int res = n; for (int i = 2; i * i <= n; i++) { if (n % i == 0) { res = res / i * (i - 1); while (n % i == 0) { n /= i; } } } if (n > 1) { res = res / n * (n - 1); } return res; } static int pow(int a, int b, int mod) { int res = 1; while (b > 0) { if ((b & 1) != 0) { res = res * a % mod; } a = a * a % mod; b >>= 1; } return res; } static boolean check(int a, int n, int phi) { for (int i = 1, j = pow(a, i, n); i <= phi; i++, j = j * a % n) { if (j == 1) { return false; } } return true; } public static void main(String[] args) { Scanner scanner = new Scanner(System.in); while (scanner.hasNext()) { int n = scanner.nextInt(); int phi = phi(n); List<Integer> ans = new ArrayList<>(); for (int i = 1; i < n; i++) { if (gcd(i, n) == 1 && check(i, n, phi)) { ans.add(i); } } Collections.sort(ans); for (int x : ans) { System.out.print(x + " "); } System.out.println(); } } } ``` 其中,gcd 函数用于求最大公约数,phi 函数用于求欧拉函数,pow 函数用于快速幂求模,check 函数用于判断一个数是否是原根。在主函数中,我们依次读入每个 n,求出 phi(n),然后枚举模 n 意义下的所有数,判断它是否是原根,将所有原根存入一个 List 中,最后排序输出即可。 希望我的回答能够帮到你,如果你有任何问题,欢迎随时提出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值