hdu1852 Beijing 2008 x^y的因子和2.0

本文针对一个特定的数学问题进行了解析,即求解2008的n次幂的所有正整数因子之和M,并进一步求解2008的M次幂对K取余的问题。通过巧妙的数学转换和编程实现,给出了具体的解题思路和代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://acm.hdu.edu.cn/showproblem.php?pid=1852

Beijing 2008

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others)
Total Submission(s): 917    Accepted Submission(s): 394


Problem Description
As we all know, the next Olympic Games will be held in Beijing in 2008. So the year 2008 seems a little special somehow. You are looking forward to it, too, aren't you? Unfortunately there still are months to go. Take it easy. Luckily you meet me. I have a problem for you to solve. Enjoy your time.

Now given a positive integer N, get the sum S of all positive integer divisors of 2008 N. Oh no, the result may be much larger than you can think. But it is OK to determine the rest of the division of S by K. The result is kept as M.

Pay attention! M is not the answer we want. If you can get 2008 M, that will be wonderful. If it is larger than K, leave it modulo K to the output. See the example for N = 1,K = 10000: The positive integer divisors of 20081 are 1、2、4、8、251、502、1004、2008,S = 3780, M = 3780, 2008 M % K = 5776. 

 

Input
The input consists of several test cases. Each test case contains a line with two integers N and K (1 ≤ N ≤ 10000000, 500 ≤ K ≤ 10000). N = K = 0 ends the input file and should not be processed.
 

Output
For each test case, in a separate line, please output the result.
 

Sample Input
  
  
1 10000 0 0
 

Sample Output
  
  
5776
 

Author
lxlcrystal@TJU
 
题意:求2008^n的所有因子和m对k取余,然后求2008^m对k取余。

题解:http://blog.youkuaiyun.com/weixin_36571742/article/details/76832624。这题是类似的一题,可以除法可以通过求逆元。因为那题的mod是29,gcd(2*166,29)==1,存在逆元。但是这里的gcd(250,k)不一定满足等于1,也就是说不一定存在逆元。那么观察我们要求的m,m肯定有250这个分母,所以可以表示成m=x/250。m%k=(x/250)%k转化为(x%(250*k))/250。求变成了先除法再取余了。

代码:

#include<bits/stdc++.h>
#define debug cout<<"aaa"<<endl
#define mem(a,b) memset(a,b,sizeof(a))
#define LL long long
#define lson l,mid,root<<1
#define rson mid+1,r,root<<1|1
#define MIN_INT (-2147483647-1)
#define MAX_INT 2147483647
#define MAX_LL 9223372036854775807i64
#define MIN_LL (-9223372036854775807i64-1)
using namespace std;

const int N = 100000 + 5;
LL n,k,a,b,ans;

LL quick(LL a,LL b,LL mod){
	LL ans=1;
	while(b){
		if(b&1){
			ans=(ans*a)%mod;
		}
		b>>=1;
		a=(a*a)%mod;
	}
	return ans;
}

int main(){
	while(~scanf("%lld%lld",&n,&k)){
		if(n==0&&k==0){
			break;
		}
		a=quick(2,3*n+1,250*k);
		b=quick(251,n+1,250*k);//mod取250*k,目的是先要保留250这个因子,放在取余后再除
		a--,b--;
		ans=(a*b)%(250*k);
		ans/=250;
		ans=((ans%k)+k)%k;
		printf("%d\n",quick(2008,ans,k));
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值