Python机器学习:模型构建

写在前面

随着人工智能时代的到来,机器学习已成为解决问题的关键工具,如识别预测疾病风险等。Python是实现机器学习的热门语言之一。接下来会详细介绍机器学习如何应用到实际问题,并概括通过Python进行实际操作。

一般建立机器学习的流程如下:
数据选择是准备机器学习的关键,其中机器学习广泛流传一句话:数据和特征决定了机器学习结果的上限,而模型算法只是尽可能逼近这个上限,意味着数据及其特征表示的质量决定了模型的最终效果,且在实际应用中,算法通常占了很小的一部分,大部分的工作都是在找数据、提炼数据、分析数据及特征工程。

image.png

所以,数据质量差或无代表性,会导致模型拟合效果差。
本文是针对于[模型构建],[模型评估]部分,展示在Python里构建机器学习模型,并对模型进行评估。

乳腺癌预测

本例选用的是sklearn上的数据集版本:Breast Cancer Wisconsin DataSe

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辣椒种子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值