机器学习Caret--R处理不平衡数据

不平衡数据集指的是数据集各个类别的样本数目相差巨大,例如2000的人群中,某疾病的发生只有100 (5%)人,那么疾病发生与不发生为 1:19。这种情况下的数据称为不平衡数据。在真实世界中,不管是二分类或三分类,不平衡数据的现象普遍存在,尤其是罕见病领域。

image.png

如果训练集的90%的样本是属于同一个类别,而我们的模型将所有的样本都分类为该类,在这种情况下,该分类器是无效的,尽管最后的分类准确度为90%。

所以在数据不均衡时,准确度(Accuracy)这个评价指标参考意义就不大了。实际上,如果不均衡比例超过4:1,分类器模型就会偏向于占比大的类别。

不平衡数据集的主要处理方法

这里我们主要介绍目前常用的方法。

  • 对数据集进行重采样
  • 评价指标选用召回率

接下来,我们将进行案例展示,随机产生5000份样本数据,预测变量为2分类。分别介绍不同的采样方法及最后评价指标。

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辣椒种子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值