WTConv:小参数大感受野,基于小波变换的新型卷积 | ECCV‘24

近年来,人们尝试增加卷积神经网络(CNN)的卷积核大小,以模拟视觉TransformerViTs)自注意力模块的全局感受野。然而,这种方法很快就遇到了上限,并在实现全局感受野之前就达到了饱和。论文证明通过利用小波变换(WT),实际上可以获得非常大的感受野,而不会出现过参数化的情况。例如,对于一个 k × k k \times k k×k 的感受野,所提出方法中的可训练参数数量仅以 k k k 进行对数增长。所提出的层命名为WTConv,可以作为现有架构中的替换,产生有效的多频响应,且能够优雅地随着感受野大小的变化而扩展。论文在ConvNeXtMobileNetV2架构中展示了WTConv层在图像分类中的有效性,以及作为下游任务的主干网络,并且展示其具有其它属性,如对图像损坏的鲁棒性以及对形状相较于纹理的增强响应。

来源:晓飞的算法工程笔记 公众号,转载请注明出处

论文: Wavelet Convolutions for Large Receptive Fields

Introduction


在过去十年中,卷积神经网络(CNN)在许多计算机视觉领域占主导地位。尽管如此,随着视觉TransformerViTs)的出现(这是一种用于自然语言处理的Transformer架构的适应),CNN面临着激烈的竞争。具体而言,ViTs目前被认为相较于CNN具有优势的原因,主要归功于其多头自注意力层。该层促进了特征的全局混合,而卷积在结构上仅局限于特征的局部混合。因此,最近几项工作尝试弥补CNNViTs之间的性能差距。有研究重构了ResNet架构和其训练过程,以跟上Swin Transformer。“增强”的一个重要改进是增加卷积核的大小。然而,实证研究表明,这种方法在 7 × 7 7\times7 7×7 的卷积核大小处就饱和了,这意味着进一步增加卷积核并没有帮助,甚至在某个时候开始出现性能恶化。虽然简单地将大小增加到超过 7 × 7 7\times7 7×7 并没有用,但RepLKNet的研究已经表明,通过更好的构建可以从更大的卷积核中获益。然而,即便如此,卷积核最终仍然会变得过参数化,性能在达到全局感受野之前就会饱和。

RepLKNet分析中,一个引人入胜的特性是,使用更大的卷积核使得卷积神经网络(CNN)对形状的偏向性更强,这意味着它们捕捉图像中低频信息的能力得到了增强。这个发现有些令人惊讶,因为卷积层通常倾向于对输入中的高频部分作出响应。这与注意力头不同,后者已知对低频更加敏感,这在其他研究中得到了证实。

上述讨论引发了一个自然的问题:能否利用信号处理工具有效地增加卷积的感受野,而不至于遭受过参数化的困扰?换句话说,能否使用非常大的滤波器(例如具有全局感受野的滤波器),同时提升性能?论文提出的方法利用了小波变换(WT),这是来自时频分析的一个成熟工具,旨在有效扩大卷积的感受野,并通过级联的方式引导CNN更好地响应低频信息。论文将解决方案基于小波变换(与例如傅里叶变换不同),因为小波变换保留了一定的空间分辨率。这使得小波域中的空间操作(例如卷积)更加具有意义。

更具体地说,论文提出了WTConv,这是一个使用级联小波分解的层,并执行一组小卷积核的卷积,每个卷积专注于输入的不同频率带,并具有越来越大的感受野。这个过程能够在输入中对低频信息给予更多重视,同时仅增加少量可训练参数。实际上,对于一个 k × k k\times k k×k 的感受野,可训练参数数量只随着 k k k 的增长而呈对数增长。而WTConv与常规方法的参数平方增长形成对比,能够获得有效的卷积神经网络(CNN),其有效感受野(ERF)大小前所未有,如图1所示。

WTConv作为深度可分离卷积的直接替代品,可以在任何给定的卷积神经网络(CNN)架构中直接使用,无需额外修改。通过将WTConv嵌入到ConvNeXt中进行图像分类,验证了WTConv的有效性,展示了其在基本视觉任务中的实用性。在此基础上,进一步利用ConvNeXt作为骨干网络,扩展评估到更复杂的应用中:在UperNet中进行语义分割,以及在Cascade Mask R-CNN中进行物体检测。此外,还分析了WTConvCNN提供的额外好处。

论文的贡献总结如下:

  1. 一个新的层WTConv,利用小波变换(WT)有效地增加卷积的感受野。

  2. WTConv被设计为在给定的卷积神经网络(CNN)中作为深度可分离卷积的直接替代。

  3. 广泛的实证评估表明,WTConv在多个关键计算机视觉任务中提升了卷积神经网络(CNN)的结果。

  4. WTConv在卷积神经网络(CNN)的可扩展性、鲁棒性、形状偏向和有效感受野(ERF)方面贡献的分析。

Method


Preliminaries: The Wavelet Transform as Convolutions

在这项工作中,采用Haar小波变换,因为它高效且简单。其他小波基底也可以使用,尽管计算成本会有所增加。

给定一个图像 X X X ,在一个空间维度(宽度或高度)上的一层Haar小波变换由核为 [ 1 , 1 ] / 2 [1,1]/\sqrt{2} [1,1]/2 [ 1 , − 1 ] / 2 [1,-1]/\sqrt{2} [1,1]/2 的深度卷积组成,之后是一个缩放因子为2的标准下采样操作。要执行2D Haar小波变换,在两个维度上组合该操作,即使用以下四组滤波器进行深度卷积,步距为2:

f L L = 1 2 [ 1 1 1 1 ] ,   f L H = 1 2 [ 1 − 1 1 − 1 ] ,   f H L = 1 2 [      1      1 − 1 − 1 ] ,   f H H = 1 2 [      1 − 1 − 1      1 ] . \begin{align} \begin{split} f_{LL} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix},\, f_{LH} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix},\, f_{HL} = \frac{1}{2} \begin{bmatrix} \;\;1 & \;\;1 \\ -1 & -1 \end{bmatrix},\, f_{HH} = \frac{1}{2} \begin{bmatrix} \;\;1 & -1 \\ -1 & \;\;1 \end{bmatrix}. \end{split} \end{align} fLL=21[1111],fLH=21[1111],fHL=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值