【Tensorflow】tf.set_random_seed(seed)

本文介绍了TensorFlow里tf.set_random_seed(seed)的作用,即设置图级随机seed。阐述了图级seed和操作级seed两种设置方式及关联使用情况,还给出不同设置下随机序列的生成示例,如不设seed、只设操作seed、只设图级seed和两者都设的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tf.set_random_seed(seed) 用于:设置图级随机seed。

seed操作有两种设置方式:图级seed 和 操作级seed。

并且两种seed是关联使用的。

相互作用如下:

1.如果没有设置图形级别和操作seed,则使用随机seed进行操作。 
2.如果设置了图级seed,但操作seed没有设置:系统确定性地选择与图级seed一起的操作seed,以便获得唯一的随机序列。 
3.如果没有设置图级seed,但是设置了操作seed:使用默认的图级seed和指定的操作seed来确定随机序列。 
4.如果图级和操作seed都被设置:两个seed联合使用以确定随机序列。

为了说明用户可见的效果,请考虑以下示例:

要跨会话生成不同的序列,既不设置图级别也不设置op级别的seed:

a = tf.random_uniform([1])
b = tf.random_normal([1])

print("Session 1")
with tf.Session() as sess1:
  print(sess1.run(a))  # generates 'A1'
  print(sess1.run(a))  # generates 'A2'
  print(sess1.run(b))  # generates 'B1'
  print(sess1.run(b))  # generates 'B2'

print("Session 2")
with tf.Session() as sess2:
  print(sess2.run(a))  # generates 'A3'
  print(sess2.run(a))  # generates 'A4'
  print(sess2.run(b))  # generates 'B3'
  print(sess2.run(b))  # generates 'B4'

要为跨会话生成一个可操作的序列,请为op设置seed:

a = tf.random_uniform([1], seed=1) 
b = tf.random_normal([1])

# Repeatedly running this block with the same graph will generate the same
# sequence of values for 'a', but different sequences of values for 'b'.
print("Session 1")
with tf.Session() as sess1:
  print(sess1.run(a))  # generates 'A1'
  print(sess1.run(a))  # generates 'A2'
  print(sess1.run(b))  # generates 'B1'
  print(sess1.run(b))  # generates 'B2'

print("Session 2")
with tf.Session() as sess2:
  print(sess2.run(a))  # generates 'A1'
  print(sess2.run(a))  # generates 'A2'
  print(sess2.run(b))  # generates 'B3'
  print(sess2.run(b))  # generates 'B4'

为了使所有op产生的随机序列在会话之间是可重复的,请设置一个图级别的seed:

tf.set_random_seed(1234)
a = tf.random_uniform([1])
b = tf.random_normal([1])

# Repeatedly running this block with the same graph will generate different
# sequences of 'a' and 'b'.
print("Session 1")
with tf.Session() as sess1:
  print(sess1.run(a))  # generates 'A1'
  print(sess1.run(a))  # generates 'A2'
  print(sess1.run(b))  # generates 'B1'
  print(sess1.run(b))  # generates 'B2'

print("Session 2")
with tf.Session() as sess2:
  print(sess2.run(a))  # generates 'A1'
  print(sess2.run(a))  # generates 'A2'
  print(sess2.run(b))  # generates 'B1'
  print(sess2.run(b))  # generates 'B2'
  • Args:

    seed: integer.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值