题意:M斐波那契数列F[n]是一种整数数列,它的定义如下:
F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )
F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )
现在给出a, b, n,你能求出F[n]的值吗?
思路:首先化简方程式,一般的矩阵处理的都是形如f[n] = f[n-1] + f[n-2]的式子,根据F[n] = F[n-1] * F[n-2],F[n-1] = F[n-2] * F[n-3]。带入化简最后得到
f[n] = f[1] ^F[n] * f[0] ^ F[n-1];
f[1] ^F[n] ,f[0] ^ F[n-1] 可以用二分快速幂求,
F[n]代表第n个数的斐波那契数列可用矩阵二分幂求
本题还用到了一个数论 :
A^B %C 这题的C是质素,而且A,C是互质的。
所以直接A^(B%(C-1)) %C
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
struct Matrix
{
long long row[2][2];
};
Matrix A,C,unit;
const int MOD = 1000000007;
void init()
{
unit.row[0][0] = 1;unit.row[0][1] = 0;
unit.row[1][0] = 0;unit.row[1][1] = 1;
A.row[0][0] = 1;A.row[0][1] = 1;
A.row[1][0] = 1;A.row[1][1] = 0;
memset(C.row,0,sizeof(C.row));
C.row[0][0] = 1;
C.row[1][0] = 1;
}
Matrix Matrix_mul(Matrix a,Matrix b)
{
Matrix sum ;
memset(sum.row,0,sizeof(sum.row));
int i,j,k;
for(i = 0; i < 2; i++)
{
for(j = 0; j < 2; j++)
{
for(k = 0; k < 2; k++)
{
sum.row[i][j] += (a.row[i][k]*b.row[k][j]) % (MOD-1);
}
}
}
return sum;
}
Matrix quck_M(Matrix a,int n)
{
Matrix B = unit;
while(n)
{
if(n&1)
B = Matrix_mul(a,B);
a = Matrix_mul(a,a);
n = n >> 1;
}
return B;
}
long long quck_m(long long a,long long m)
{
long long rec = 1;
a = a % MOD;
while(m)
{
if(m&1)
rec = (rec%MOD) * (a % MOD)%MOD;
a = (a%MOD)*(a %MOD);
m = m >> 1;
}
return rec;
}
int main()
{
int a,b,n;
while(scanf("%d%d%d",&a,&b,&n)!= EOF)
{
init();
if(n == 0)
{
printf("%d\n",a);
continue;
}
else if(n == 1)
{
printf("%d\n",b);continue;
}
else if(n == 2)
{
printf("%d\n",a*b%MOD);continue;
}
Matrix B = quck_M(A,n-2);
B = Matrix_mul(B,C);
long long aa = B.row[0][0];
long long bb = B.row[1][0];
long long count = (quck_m(a,bb)%MOD)*(quck_m(b,aa) % MOD) % MOD;
printf("%lld\n",count);
}
return 0;
}