【算法】每日算法总结之杨辉三角,解数独,跳跃游戏

算法学习与数独解决:动态规划、贪心与回溯法
这篇博客介绍了三种算法:杨辉三角的动态规划解法,跳跃游戏的贪心策略,以及解数独的回溯算法。通过实例展示了如何实现这些算法,并提供了Java代码示例。博客内容涵盖数组操作、递归和搜索策略,适合进阶的算法学习者参考。

14天阅读挑战赛
努力是为了不平庸~
算法学习有些时候是枯燥的,坚持学习,一起见证技术er的成长~

在这里插入图片描述

算法题目

算法知识点如下
杨辉三角,类型:数组,动态规划,比较简单。
解数独,类型:数组,回溯,比较难。
跳跃游戏,类型,贪心,数组,中等难度。

算法题目描述

杨辉三角
给定一个非负整数 numRows,生成「杨辉三角」的前 numRows 行。
在「杨辉三角」中,每个数是它左上方和右上方的数的和。

示例 1:
输入: numRows = 5
输出: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]

示例 2:
输入: numRows = 1
输出: [[1]]

提示:
1 <= numRows <= 30

java解题代码如下

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小冷coding

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值