5、数论:整数的奇妙世界

数论:整数的奇妙世界

1. 整除性

在数论中,整除性是一个基础且关键的概念。当 (m > 0) 且 (n/m) 为整数时,我们称 (m) 整除 (n),记作 (m \mid n)。若 (m) 不能整除 (n),则记为 (m \nmid n)。

1.1 最大公约数与最小公倍数

最大公约数(gcd)和最小公倍数(lcm)是整除性中的重要概念。对于两个整数 (m) 和 (n),它们的最大公约数 (gcd(m, n)) 是能同时整除 (m) 和 (n) 的最大整数,例如 (gcd(12, 18) = 6)。最小公倍数 (lcm(m, n)) 是满足 (m \mid k) 且 (n \mid k) 的最小正整数 (k),如 (lcm(12, 18) = 36)。

计算最大公约数可以使用欧几里得算法,其递推公式为:
- (gcd(0, n) = n)
- 当 (m > 0) 时,(gcd(m, n) = gcd(n \bmod m, m))

例如,计算 (gcd(12, 18)):
- (gcd(12, 18) = gcd(6, 12) = gcd(0, 6) = 6)

欧几里得算法还可以扩展,用于找到满足 (m’m + n’n = gcd(m, n)) 的整数 (m’) 和 (n’)。以 (m = 12),(n = 18) 为例,可得到 (6 = (-1) \cdot 12 + 1 \cdot 18)。

1.2 整除性的一些性质

  • 若 (k \mid m) 且 (k \mid n),则 (k \mid gcd(m, n))。 </
基于可靠评估序贯蒙特卡洛模拟法的配电网可靠评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠评估序贯蒙特卡洛模拟法的配电网可靠评估研究”,介绍了利用Matlab代码实现配电网可靠的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样与统计,通过模拟系统元件的故障与修复过程,评估配电网的关键可靠指标,如系统停电频率、停电持续时间、负荷点可靠等。该方法能够有效处理复杂网络结构与设备时序特,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码与案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行与可靠分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠评估中的基本原理与实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠定量评估与优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定因素进行深化研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值