问题描述
斐波那契数列大家都非常熟悉。它的定义是:
f(x) = 1 .... (x=1,2)
f(x) = f(x-1) + f(x-2) .... (x>2)
对于给定的整数 n 和 m,我们希望求出:
f(1) + f(2) + ... + f(n) 的值。但这个值可能非常大,所以我们把它对 f(m) 取模。
公式如下
但这个数字依然很大,所以需要再对 p 求模。
f(x) = 1 .... (x=1,2)
f(x) = f(x-1) + f(x-2) .... (x>2)
对于给定的整数 n 和 m,我们希望求出:
f(1) + f(2) + ... + f(n) 的值。但这个值可能非常大,所以我们把它对 f(m) 取模。
公式如下
但这个数字依然很大,所以需要再对 p 求模。
输入格式
输入为一行用空格分开的整数 n m p (0 < n, m, p < 10^18)
输出格式
输出为1个整数,表示答案

该博客讨论了如何计算斐波那契数列前n项和对f(m)取模后的结果,再对p取模。博主通过观察发现递推公式,并提供了一个C++程序实现,但由于大整数运算限制,程序只能处理部分数据。
最低0.47元/天 解锁文章
1088

被折叠的 条评论
为什么被折叠?



