A unit fraction contains 1 in the numerator. The decimal representation of the unit fractions with denominators 2 to 10 are given:
1/2 =0.5
1/3= 0.(3)
1/4=0.25
1/5=0.2
1/6=0.1(6)
1/7=0.(142857)
1/8= 0.125
1/9=0.(1)
1/10=0.1
Where 0.1(6) means 0.166666..., and has a 1-digit recurring cycle. It can be seen that 1/7 has a 6-digit recurring cycle.
Find the value of d < 1000 for which 1/d contains the longest recurring cycle in its decimal fraction part.
找出大于1/1000的分数转换成小数后,循环位最长的数。
分数转换为小数,举例1/7
1. 1×10÷7=1余3
2. 3×10÷7=4余2
3. 2×10÷7=2余6
4. 6×10÷7=8余4
5. 4×10÷7=5余5
6. 5×10÷7=7余1
7.余数1重复,出现循环位。循环小数为0.(142857)
任何一个类似1/d(d为正整数)的分数,至多经过d次运算,一定会出现循环位。
1/2 =0.5
1/3= 0.(3)
1/4=0.25
1/5=0.2
1/6=0.1(6)
1/7=0.(142857)
1/8= 0.125
1/9=0.(1)
1/10=0.1
Where 0.1(6) means 0.166666..., and has a 1-digit recurring cycle. It can be seen that 1/7 has a 6-digit recurring cycle.
Find the value of d < 1000 for which 1/d contains the longest recurring cycle in its decimal fraction part.
找出大于1/1000的分数转换成小数后,循环位最长的数。
分数转换为小数,举例1/7
1. 1×10÷7=1余3
2. 3×10÷7=4余2
3. 2×10÷7=2余6
4. 6×10÷7=8余4
5. 4×10÷7=5余5
6. 5×10÷7=7余1
7.余数1重复,出现循环位。循环小数为0.(142857)
任何一个类似1/d(d为正整数)的分数,至多经过d次运算,一定会出现循环位。
本文探讨了单位分数转换为小数后的循环周期问题,并通过实例分析指出1/7具有6位循环周期。进一步讨论如何找到小于1000的分母中循环周期最长的分数。
976

被折叠的 条评论
为什么被折叠?



