Exponential family form of Multivariate Gaussian Distribution

Question

Exponential Family. Verify that the multivariate Gaussian distribution can be casted in exponential family form and derive expressions for η, b(η), T(η), a(η).

Solution

The exponential family form is

p(y;η)=b(y)exp[ηTT(y)a(η)]

The multivariate Gaussian distribution takes the form
N(x|μ,Σ)=1(2π)D/2|Σ|1/2exp[12(xμ)TΣ1(xμ)]

Since
12(xμ)TΣ1(xμ)=12(xTμT)Σ1(xμ)=12(xTΣ1xxTΣ1μμTΣ1x+μTΣ1μ)=12(xTΣ1x2μTΣ1x+μTΣ1μ)=12(vec(Σ1)vec(xxT)2μTΣ1x+μTΣ1μ)=12([vec(Σ1)2μTΣ1][vec(xxT)x]+μTΣ1μ)=[12vec(Σ1)μTΣ1][vec(xxT)x]12μTΣ1μ

The 3rd equation is due to
(Trace of a real number is still a real number and Σ1 is a symmetric matrix)
xTΣ1μ=Tr(xTΣ1μ)=Tr(xTΣ1μ)T=Tr(μTΣTx)=Tr(μTΣ1x)=μTΣ1x

The 4th equation is due to xTΣ1x=vec(Σ1)Tvec(xxT), where vec means stack all columns of a matrix into one single column, i.e. if x=|x1||x2||||xm|, then
vec(x)=|x1|x2||xm|

So we can derive the parameter of exponential family as below:
b(y)=1(2π)D/2η=12vec(Σ1)μTΣ1T(y)=[vec(xxT)x]a(η)=12μTΣ1μln|Σ|1/2
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值