多输入多输出 | MATLAB实现MLP多层感知机模型多输入多输出回归预测
预测效果
基本介绍
多层感知器(Multilayer Perceptron,缩写MLP)是一种前向结构的人工神经网络,映射一组输入向量到一组输出向量。MLP可以被看作是一个有向图,由多个的节点层所组成,每一层都全连接到下一层。除了输入节点,每个节点都是一个带有非线性激活函数的神经元(或称处理单元)。一种被称为反向传播算法的监督学习方法常被用来训练MLP。
模型设计
- 激活函数
若每个神经元的激活函数都是线性函数,那么,任意层数的MLP都可被约简成一个等价的单层感知器。
实际上,MLP本身可以使用任何形式的激活函数,譬如阶梯函数逻辑Sigmoid函数,但为了使用反向传播算法进行有效学习,激活函数必须限制为可微函数。由于具有良好可微性,很多S函数,尤其是双