随着大语言模型技术的持续突破与火热发展,AI 智能体正从单点能力迈向复杂系统协作,多智能体系统(Multi-Agent Systems, MAS)成为学术和产业界聚焦的新前沿。在这一背景下,「Agentic Workflow」作为面向智能体自主决策与协作流程自动生成的技术理念,正成为多智能体系统研究和应用的探索热点。
为提升智能体系统的自主化与智能化,谷歌、上海 AI Lab 等国内外领先团队陆续推出了 Meta-GPT、ADAS、AFlow 等创新性 Agentic Workflow 工作,大力推动利用大模型实现任务规划、分工协作与流程优化的自动化进程。
尽管这些系统能够灵活的表达工作流,但在自动化搜索工作流的过程中,存在合理性难以保证、可验证性不足、 难以直观表达等突出挑战,严重制约了多智能体系统的可靠落地与规模化部署。
近日,来自新加坡 A*STAR 的 Centre for Frontier AI Research (CFAR) 研究所与南洋理工大学的研究团队联合发布了创新性工作流框架「MermaidFlow」,推动智能体系统迈向结构化进化与安全可验证的新范式。

-
论文链接

最低0.47元/天 解锁文章

419

被折叠的 条评论
为什么被折叠?



