codeforces 347 c Alice and Bob(博弈 && 数学)

本文探讨了一种基于等比数列的游戏策略分析方法,通过计算数列的最大值与公因数之间的关系来预测游戏的可能结局。通过对给定数值集合的操作,确定了能够加入的新元素数量,并据此判断了胜者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:

给出一个数的set,a和b每次轮流选两个不同的数,当这两个数的差的绝对值在set里不存在时,就可以把这个差值加入到set里,当有人不能加入时输,游戏结束。


解题思路:

其实能加入多少个数是固定的,跟先后操作顺序无关。所以我们只需要确定可以步数即可以加入多少个数,然后判断奇偶就可以确定谁赢了。

然后怎么确定呢,找规律我们可以发现当一个set里的数成等比数列的时候,我们就无法再加入一个数。一个set里最终形成的等比数列的公比就是它们的gcd,所以最大值max/gcd就是这个等比数列的个数,减去n就是可以加入的数,判断下奇偶即可。


代码:

#include <bits/stdc++.h>
using namespace std;
const int maxn=1e5+5;
int a[maxn];

int main()
{
    int n, i, num;
    num=0;
    cin>>n;
    int x, ma=0;
    int g;
    for(i=0; i<n; i++)
    {
        scanf("%d", &a[i]);
        ma=a[i]>ma?a[i]:ma;
        if(i==1)g=__gcd(a[0], a[1]);
        else if(i>1)g=__gcd(g, a[i]);
    }
    /*
    int j, k, ans=0;;
    for(i=0; i<n; i++)
    {
        for(j=i+1; j<n; j++)
        {
            x=abs(a[i]-a[j]);
            for(k=0; k<n; k++)
            {
                if(x==a[k])break;
            }
            if(k==n)ans=1;
            
        }
    }
    if(ans==0)return 0*printf("Bob\n");
    */
    if((ma/g-n)%2)printf("Alice\n");
    else printf("Bob\n");
}


### 解题思路 #### 问题描述 Codeforces 1678C - Tokitsukaze and Strange Inequality 是一道关于排列组合与前缀的应用问题。给定一个长度为 \( n \) 的排列数组 \( p \),需要统计满足条件 \( a < b < c < d \) 并且 \( p_a < p_c \) 同时 \( p_b > p_d \) 的四元组数量。 --- #### 核心思想 由于数据规模较小 (\( n \leq 5000 \)),可以直接通过枚举的方式解决问题。为了降低时间复杂度,引入 **前缀** 技术来加速计算过程[^3]。 具体来说: - 枚举变量 \( a \) \( c \),固定它们之后,目标是快速找到符合条件的 \( b \) \( d \)。 - 使用预处理好的前缀数组 `num` 来高效查询某个范围内满足特定关系的数量。 - 定义辅助数组 `sum` 表示对于固定的区间范围内的某些约束条件下的累积计数结果。 --- #### 实现细节 ##### 步骤一:构建前缀数组 `num` 定义二维数组 `num[i][j]`,其中 `num[i][j]` 表示在序列的前 \( i \) 项中,有多少个元素大于 \( j \)。 该数组可以通过如下方式初始化: ```python n = len(p) max_val = max(p) # 初始化 num 数组 num = [[0] * (max_val + 2) for _ in range(n + 1)] for i in range(1, n + 1): for j in range(max_val + 1, -1, -1): # 反向遍历以保持正确性 if p[i - 1] > j: num[i][j] = num[i - 1][j] + 1 else: num[i][j] = num[i - 1][j] ``` 上述代码的时间复杂度为 \( O(n \cdot m) \),其中 \( m \) 是数组中的最大值。 --- ##### 步骤二:定义并填充辅助数组 `sum` 定义另一个二维数组 `sum[i][j]`,它表示当 \( a=i \), \( c=j \) 时,在区间 \([a+1, c-1]\) 中满足 \( p[b] > p[d] \) 的总贡献次数。 利用动态规划的思想逐步更新此数组: ```python sum_ = [[0] * (n + 1) for _ in range(n + 1)] bucket = [0] * (max_val + 1) for l in range(n - 1, 0, -1): bucket[p[l]] += 1 for r in range(l + 2, n + 1): sum_[l][r] = sum_[l][r - 1] + (num[r - 1][p[r - 1]] - num[l][p[r - 1]]) ``` 这里的关键在于如何有效累加当前区间的合法贡献,并借助之前已经计算的结果减少重复运算。 --- ##### 步骤三:枚举所有可能的 \( a \) \( c \) 最后一步是对所有的 \( a \) \( c \) 进行双重循环,并将对应位置上的 `sum[a][c]` 加入最终答案中: ```python result = 0 for a in range(1, n - 2): for c in range(a + 2, n): result += sum_[a][c] print(result) ``` 整个算法的核心部分即完成以上三个阶段的操作即可实现高效的解决方案。 --- ### 总结 本题主要考察的是对多重嵌套结构的有效简化以及合理运用前缀技巧的能力。通过巧妙设计的数据结构能够显著提升程序运行效率至可接受水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值